In this paper, we describe a new method for simulating mechanical assembly between components that are composed of surfaces that do not have perfect geometric form. Mating between these imperfect form surfaces is formulated as a constrained optimization problem of the form “minimize the distance from perfect fit, subject to noninterference between components.” We explore the characteristics of this mating problem and investigate the applicability of several potential solution algorithms. The problem can be solved by converting the constrained optimization formulation into an unconstrained problem using a penalty-function approach. We describe the characteristics of this unconstrained formulation and test the use of two different solution methods: a randomized search technique and a gradient-based method. We test the algorithm by simulating mating between component models that exhibit form errors typically generated in end-milling processes.

1.
Mullineux
,
G.
, 1987, “
Optimization Scheme for Assembling Components
,”
Comput.-Aided Des.
0010-4485,
19
(
1
), pp.
35
40
.
2.
Kim
,
S. H.
, and
Lee
,
K.
, 1989, “
An Assembly Modeling System for Dynamic and Kinematic Analysis
,”
Comput.-Aided Des.
0010-4485,
21
(
1
), pp.
2
12
.
3.
Turner
,
J. U.
, 1990, “
Relative Positioning of Parts in Assemblies Using Mathematical Programing
,”
Comput.-Aided Des.
0010-4485,
22
(
7
), pp.
394
400
.
4.
Sodhi
,
R.
, and
Turner
,
J. U.
, 1994, “
Relative Positioning of Variational Part Models for Design Analysis
,”
Comput.-Aided Des.
0010-4485,
26
(
5
), pp.
366
378
.
5.
Oberg
,
E.
,
Jones
,
F.
,
Holbrook
,
H.
, and
Ryffel
,
H.
, 1996,
Machinery’s Handbook
,
25th ed.
,
Industrial
,
New York
.
6.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Shareef
,
I. A.
, 1982, “
The Prediction of Surface Accuracy in End Milling
,”
ASME J. Eng. Ind.
0022-0817,
104
, pp.
272
278
.
7.
Gu
,
F.
,
Melkote
,
S. N.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 1994, “
A Model for the Prediction of Surface Flatness in Face Milling
,”
Materials Issues in Machining-II and the Physics of Machining Processes-II
,
ASME
,
New York
.
8.
Gupta
,
S.
, and
Turner
,
J. U.
, 1993, “
Variational Solid Modeling for Tolerance Analysis
,”
IEEE Comput. Graphics Appl.
0272-1716,
May, pp.
64
74
.
9.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
, 1989,
Discreet-Time Signal Processing
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
84
85
.
10.
Piegl
,
L.
, and
Tiller
,
W.
, 1997,
The NURBS Book: Monographs in Visual Communication
,
2nd ed.
,
Springer
,
New York
.
11.
Tucker
,
T.
, 2000, “
A New Method for Parametric Surface Registration
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
12.
Pierce
,
S.
, 2003, “
A Method for Integrating Form Errors Into Tolerance Analysis
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
13.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in C: The Art of Scientific Computing
,
2nd ed.
,
Cambridge University Press
,
Melbourne, Australia
.
14.
Reklaitis
,
G. V.
,
Ravindran
,
A.
, and
Ragsdell
,
K. M.
, 1997,
Engineering Optimization: Methods and Applications
,
Wiley
,
New York
.
15.
Emery
,
F. E.
, and
O’Hagan
,
M. O.
, 1966, “
Optimal Design of Matching Networks for Microwave Transistor Amplifiers
,”
IEEE Trans. Microwave Theory Tech.
0018-9480,
1966
, pp.
696
698
.
You do not currently have access to this content.