This paper presents a method for modifying the design of the new part for the maximum utilization of existing production lines dedicated to other products. The method takes as inputs a nominal part design and the process information of the (potentially multiple) existing line(s), and produces a modified part design and a process sequence of the new part that maximizes the utilization of available manufacturing processes in the existing lines or equivalently minimizes the addition of new processes dedicated to the new product. The problem is formulated as mixed discrete-continuous multiobjective optimization. A multiobjective genetic algorithm is used to generate Pareto optimal designs for the optimization analysis. A case study on the production of a new machine bracket considering two available production lines is presented.

1.
MacDuffie
,
J. P.
, 1991, “
Beyond Mass Production: Flexible Production Systems and Manufacturing Performance in the World Auto Industry
,” Ph.D. dissertation, Sloan School of Management,
MIT
, Cambridge, MA.
2.
Manson
,
F.
, 1995, “
High Volume Learns to Flex
,”
Manuf. Eng.
0361-0853,
115
(
5
), pp.
53
59
.
3.
Shah
,
J. J.
, and
Wright
,
P. K.
, 2000, “
Developing Theoretical Foundations of DfM
,”
Proc. of 2000 ASME Design Engineering Technical Conferences
, Sept. 10–14, Baltimore, ASME, New York, ASME Paper No. DETC2000/DFM-14015.
4.
Van Vliet
,
J. W.
,
van Luttervelt
,
C. A.
, and
Kals
,
H. J. J.
, 1999, “
State-of-the-Art Report on Design for Manufacturing
,”
Proc. of 1999 ASME Design Engineering Technical Conferences
, Sept. 12–13, Las Vegas, ASME, New York, ASME Paper No. DETC99/DFM-8970.
5.
Bralla
,
J. G.
, 1999,
Design for Manufacturability Handbook
,
2nd ed.
,
McGraw-Hill
,
New York
.
6.
Boothroyd
,
G.
, and
Dewhurst
,
P.
, 1987,
Product Design for Assembly
,
Boothroyd Dewhurst
,
Wakefield, RI
.
7.
Taylor
,
G. D.
,
English
,
J. R.
, and
Graves
,
R. J.
, 1994, “
Designing New Products; Compatibility With Existing Product Facilities and Anticipated Product Mix
,”
Integr. Manuf. Syst.
0957-6061,
5
, pp.
13
21
.
8.
Herrmann
,
J. W.
, and
Chincholkar
,
M. M.
, 2000, “
Design for Production: A Tool for Reducing Manufacturing Cycle Time
,”
Proc. of the 2000 ASME Design Engineering Technical Conference
, Sept. 10–13, Baltimore, ASME, New York, ASME Paper No. DETC2000/DFM-14002.
9.
Brissaud
,
D.
,
Paris
,
H.
, and
Tichkiewitch
,
S.
, 1997, “
Assisting Designers in the Forecasting of Surfaces Used for Easier Fixturing in a Machining Process
,”
J. Mater. Process. Technol.
0924-0136,
65
, pp.
26
33
.
10.
Coope
,
R. L.
, 1993, “
Modular Fixturing vs. Dedicated Tooling—the Pros and Cons
,” SME Technical Paper TE93-388.
11.
Kakish
,
J.
,
Zhang
,
P.
, and
Zeid
,
I.
, 2000, “
Towards the Design and Development of a Knowledge-Based Universal Modular Jigs and Fixtures Systems
,”
J. Intell. Manuf.
0956-5515,
11
, pp.
381
401
.
12.
Sarma
,
S. E.
, and
Wright
,
P. K.
, 1997, “
Reference Free Part Encapsulation: A New Universal Fixturing Concept
,”
J. Manuf. Syst.
0278-6125,
16
(
1
), pp.
35
47
.
13.
Sarma
,
S. E.
, and
Wright
,
P. K.
, 1998, “
Using Mechanical Hardware to Simplify Process Planning
,”
Comput.-Integr. Manuf. Syst.
0951-5240,
11
(
3
), pp.
147
155
.
14.
Escoto
,
R. P.
,
McDonnell
,
L. R.
,
Vicens
,
S. E.
, and
Lario
,
E. F. C.
, 1998, “
Development of an Algorithm for the Application of Group Technology in the Design of Manufacturing Systems
,”
Prod. Plan. Control
0953-7287,
9
(
3
), pp.
267
274
.
15.
Kamel
,
M.
,
Ghenniwa
,
H.
, and
Liu
,
T.
, 1994, “
Machine Assignment and Part-Families Formation Using Group Technology
,”
J. Intell. Manuf.
0956-5515,
5
(
4
), pp.
225
237
.
16.
Kamrani
,
A. K.
,
Agarwal
,
A.
, and
Parsari
,
H.
, 1994,
Automated Coding & Classifications Systems with Supporting Databases for Effective Design of Integrated Manufacturing Systems
,
The Special Issue of the Intelligent Manufacturing Systems, Environmental and Intelligent Manufacturing Systems Series
,
Prentice Hall
,
Englewood Cliffs, NJ
.
17.
Kao
,
Y.
, and
Moon
,
Y. B.
, 1998, “
Feature-Based Memory Association for Group Technology
,”
Int. J. Prod. Res.
0020-7543,
36
(
6
), pp.
1653
1677
.
18.
Xu
,
H.
, and
Wang
,
H.
, 1989, “
Part Family Formation for GT Applications Based on Fuzzy Mathematics
,”
Int. J. Prod. Res.
0020-7543,
27
(
9
), pp.
1637
1651
.
19.
Chang
,
T. C.
, and
Wysk
,
R. A.
, 1985,
An Introduction to Automated Process Planning Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
20.
Gupta
,
S. K.
,
Regli
,
W. C.
,
Das
,
D.
, and
Nau
,
D. S.
, 1997, “
Automated Manufacturability Analysis: A Survey
,”
Res. Eng. Des.
0934-9839,
9
, pp.
168
190
.
21.
Kamrani
,
A. K.
, 1996, “
An Integrated Knowledge-Based System for Product Design Feasibility and Manufacturability Analysis
,”
Comput. Ind. Eng.
0360-8352
31
(
1–2
), pp.
83
86
.
22.
Paris
,
H.
, and
Brissaud
,
D.
, 2000, “
Modelling for Process Planning: The Links Between Process Planning Entities
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
16
, pp.
259
266
.
23.
Shah
,
J. J.
, 1992,
Features in Design and Manufacturing: Intelligent Design and Manufacturing
,
Wiley
,
New York
.
24.
Brissaud
,
D.
, and
Tichkiewitch
,
S.
, 2000, “
Innovation and Manufacturability Analysis in an Integrated Design Context
,”
Comput Ind.
0166-3615,
43
, pp.
111
121
.
25.
Qureshi
,
K.
, and
Saitou
,
K.
, 2002, “
Design for Fixturability (DFF) Methodology for Commodity Parts: A Case Study With Connecting Rod Designs
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
2
(
1
), pp.
21
27
.
26.
Deb
,
K.
,
Agrawal
,
S.
,
Pratab
,
A.
, and
Meyarivan
,
T.
, 2000, “
A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II
,”
Proc. of Parallel Problem Solving From Nature VI
,
Paris, France
, pp.
849
858
.
27.
Coello
,
C. A.
,
Veldhuizen
,
D. A.
, and
Lamont
,
G. D.
, 2002,
Evolutionary Algorithms for Solving Multi-Objective Problems
,
Kluwer Academic/Plenum Publishers
,
London
.
28.
Michalewicz
,
Z.
, 1994,
Genetic Algorithms+DataStructures=Evolution Programs
,
3rd ed.
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.