In this paper, we propose an integrated approach to analysis and evaluation for STEP-based (STandard for the Exchange of Product model data, officially ISO 10303) electromechanical assemblies. First, two assembly representational models are brought up and elaborated: the EXPRESS/XML schema-based model and the NIST object-oriented UML-based open assembly model (OAM). Then, these two models are integrated, in which the OAM incorporates the EXPRESS/XML schema-based assembly model to completely capture the detailed geometric information. The proposed assembly evaluation approach uses the EXPRESS/XML schema-based model as the information source, and covers not only the geometric and physical characteristics of assembly parts but also the assembly operation data necessary to assemble the parts. The feature of this approach is the linkage of the STEP product definition to the fuzzy analytic hierarchy process for assembly evaluation. The proposed approach has the flexibility to be used in various assembly methods and different environments. A case study shows the feasibility of the proposed approach.

1.
Lim
,
S. S.
,
Lee
,
I. B. H.
,
Lim
,
L. E. N.
, and
Ngoi
,
B. K. A.
, 1995, “
Computer Aided Concurrent Design of Product and Assembly Processes: A literature review
,”
J. Des. Manuf.
0962-4694,
5
(
1
), pp.
67
88
.
2.
Zha
,
X. F.
, and
Lim
,
S. Y. E.
, 1998, “
Integrated Knowledge-Based Assembly Sequence Planning
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
14
(
1
), pp.
50
64
.
3.
Abduliah
,
T. A.
,
Popplewell
,
K.
, and
Page
,
C. J.
, 2003, “
A Review of the Support Tools for the Process of Assembly Method Selection and Assembly Planning
,”
Int. J. Prod. Res.
0020-7543,
41
(
11
), pp.
2391
2410
.
4.
Zha
,
X. F.
, 2001, “
Neuro-Fuzzy Comprehensive Assemblability and Assembly Sequence Evaluation for Assembly
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604
15
(
4
), pp.
367
384
.
5.
Boothroyd
,
G.
, and
Dewhurst
,
P.
, 1989, Product Design for Assembly, Boothroyd Dewhurst Inc.
6.
Jakiela
,
M. J.
, 1989, “
Intelligent Suggestive CAD System
,”
Proceedings of MIT-JSME Workshop, MIT
, Cambridge, MA, pp.
411
441
.
7.
Jakiela
,
M. J.
, and
Papalambros
,
P.
, 1989, “
Design and Implementation of a Prototype Intelligent CAD system
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
(
2
), pp.
252
258
.
8.
Zha
,
X. F.
,
Lim
,
S. Y. E.
, and
Fok
,
S. C.
, 1999, “
Integrated Knowledge-Based Approach and System for Product Design for Assembly
,”
Int. J. Comput. Integr. Manuf.
0951-192X,
12
(
3
), pp.
211
237
.
9.
Swift
,
K. G.
, 1981,
Design for Assembly Handbook
,
Salford University Industrial Center
, UK.
10.
Sturges
,
R. H.
, and
Kilani
,
M. I.
, 1992, “
Towards an Integrated Design for an Assembly Evaluation and Reasoning System
,”
Comput.-Aided Des.
0010-4485,
24
(
2
), pp.
67
79
.
11.
Li
,
R. K.
, and
Hwang
,
C. L.
, 1992, “
A Framework for Automatic DFA System Development
,”
Comput. Ind. Eng.
0360-8352,
22
(
4
), pp.
403
413
.
12.
Miyakawa
,
S.
,
Ohashi
,
T.
, and
Iwata
,
M.
, 1990, “
The Hitachi New Assemblability Evaluation Method
,” Trans. North Am. Manuf. Res. Inst. SME, SME.
13.
Miles
,
B. L.
, and
Swift
,
K. G.
, 1992, Working Together, Manufacturing Breakthrough.
14.
Warnecke
,
H. J.
, and
Bassler
,
R.
, 1988, “
Design for Assembly - Part of the Design Process
,”
CIRP Ann.
0007-8506,
37
(
1
), pp.
1
4
.
15.
de Fazio
,
T. L.
,
Rhee
,
S. J.
, and
Whitney
,
D. E.
, 1997, “
A Design-Specific Approach Design For Assembly (DFA) for Complex Mechanical Assemblies
,”
Proceedings of the IEEE International Symposium on Assembly and Task Planning
, CA, USA pp.
152
158
.
16.
Liu
,
T. H.
, and
Fischer
,
G. W.
, 1994, “
Assembly Evaluation Method for PDES/STEP-Based Mechanical Systems
,”
J. Des. Manuf.
0962-4694,
4
(
1
), pp.
1
19
.
17.
Zha
,
X. F.
, 2002, “
Integrating the STEP-Based Assembly Model and XML Schema With the Fuzzy Analytic Hierarchy Process (AHP) for assembly evaluation
,” NTUIR, Singapore. (See also 49,)
18.
Jared
,
G. E. M.
,
Limage
,
M. G.
,
Sherrin
,
I. J.
, and
Swift
,
K. G.
, 1994, “
Geometric Reasoning and Design for Manufacture
,”
Comput.-Aided Des.
0010-4485,
26
(
9
), pp.
528
536
.
19.
Whitney
,
D. E.
, and
Mantripragada
,
R.
, 1998, “
The Datum Flow Chain: A Systematic Approach to Assembly Design and Modeling
,”
ASME Design Engineering Technical Conferences and Computers in Engineering Conference
.
20.
Whitney
,
D. E.
, 2004,
Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development
,
Oxford University Press
, Oxford.
21.
Lee
,
K.
, and
Gossard
,
D. C.
, 1985, “
A Hierarchical Data Structure for Representing Assemblies
,”
Comput.-Aided Des.
0010-4485,
17
(
1
), pp.
15
19
.
22.
van der Net
,
A.
, 1998, Designing and Manufacturing Assemblies,” Eindhoven University of Technology.
23.
Noort
,
A.
,
Hoek
,
G. F. M.
, and
Bronsvoort
,
W. F.
, 2002, “
Integrating Part and Assembly Modeling
,”
Comput.-Aided Des.
0010-4485,
34
(
12
), pp.
899
912
.
24.
Callahan
,
S.
,
Heisserman
,
J.
,
Pratt
,
M. J.
,
Sriram
,
R. D.
, and
Wozny
,
M. J.
, 1997,
Product Modeling for Computer Integrated Design and Manufacture, A Product Representation to Support Process Automation
,
Chapman and Hall
, London, pp.
285
296
.
25.
Shah
,
J. J.
, 1991, “
Assessment of Features Technology
,”
Comput.-Aided Des.
0010-4485,
23
(
5
), pp.
331
343
.
26.
Shah
,
J. J.
, and
Rogers
,
M. T.
, 1993, “
Assembly Modeling as an Extension of Feature-Based Design
,”
Res. Eng. Des.
0934-9839,
5
, pp.
218
237
.
27.
van Holland
,
W.
, and
Bronsvoort
,
W. F.
, 2000, “
Assembly Features in Modeling and Planning
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
16
(
4
), pp.
277
294
.
28.
Coma
,
O.
,
Mascle
,
C.
, and
Veron
,
P.
, 2003, “
Geometric and Form Feature Recognition Tools Applied to a Design for Assembly Methodology
,”
Comput.-Aided Des.
0010-4485,
35
(
13
), pp.
1193
1210
.
29.
Chan
,
C. K.
, and
Tan
,
S. T.
, 2003, “
Generating Assembly Features Onto Split Solid Models
,”
Comput.-Aided Des.
0010-4485,
35
(
14
), pp.
1315
1336
.
30.
Stokes
,
M.
, 2001, Managing Engineering Knowledge: MOKA Methodology for Knowledge Based Engineering Applications, American Society of Mechanical Engineers, ISBN 0791801659.
31.
Zha
,
X. F.
, and
Du
,
H.
, 2002, “
A PDES/STEP-Based Model and System for Concurrent Integrated Design and Assembly Planning
,”
Comput.-Aided Des.
0010-4485,
34
(
12
), pp.
1087
1110
.
32.
Sudarsan
,
R.
,
Han
,
Y. H.
,
Feng
,
S. C.
,
Roy
,
U.
,
Wang
,
F.
,
Sriram
,
R. D.
, and
Lyons
,
K.
, 2003, “
Object Oriented Representation of Electro-Mechanical Assemblies using UML
,” NISTIR 7057, NIST, Gaithersburg, MD.
33.
ISO 10303-11, Industrial automation systems and integration–Product data representation and exchange - Part 11: Description methods: The EXPRESS language reference manual.
34.
ISO/DIS 10303-14, Industrial automation systems and integration—Product data representation and exchange - Part 14: Description methods: The EXPRESS-X language reference manual.
35.
Fenves
,
S. J.
, 2001, “
A Core Product Model for Representing Design Information
,” NISTIR 6736, NIST, Gaithersburg, MD.
36.
ISO/DIS 10303-108, Industrial automation systems and integration—Industrial data - Part 108: Integrated application resources: Parameterization and constraints for explicit geometric product models.
37.
ISO/DIS 10303-109, Industrial automation systems and integration—Product data representation and exchange - Part 109: Integrated application resource: Kinematic and geometric constraints for assembly models.
38.
ISO/DIS 10303-41, Industrial automation systems and integration—Product data representation and exchange - Part 41: Integrated generic resource: Fundamentals of product description and support.
39.
ISO/DIS 10303-43, Industrial automation systems and integration—Product data representation and exchange - Part 43: Integrated generic resource: Representation structures.
40.
ISO/DIS 10303-44, Industrial automation systems and integration—Product data representation and exchange - Part 44: Integrated generic resource: Product structure configuration.
41.
ISO/DIS 10303-42, Industrial automation systems and integration—Product data representation and exchange - Part 42: Integrated generic resource: Geometric and topological representation.
42.
ISO/DIS 10303-48, Industrial automation systems and integration—Product data representation and exchange - Part 48: Integrated generic resource: Form features.
43.
ISO/DIS 10303-47, Industrial automation systems and integration—Product data representation and exchange - Part 47: Integrated generic resource: Shape variation tolerances.
44.
ISO/CD TS 10303-28, Industrial automation systems and integration—Product data representation and exchange - Part 28: Implementation methods: XML representations of EXPRESS schemas and data.
45.
Saaty
,
T. L.
, 1991,
The Analytic Hierarchy Process
,
McGraw–Hill
, New York.
46.
Kim
,
J. S.
, 2003, “
Negotiation Support in Electronic Commerce Using Fuzzy Membership Functions and AHP
,”
Proceedings of the 6th Pacific Rim International Workshop on Multi-Agents (PRIMA)
, Seoul, Korea, pp.
93
104
.
47.
Ben-Arieh
,
D.
, 1994, “
A Methodology for Analysis of Assembly Operations’ Difficulty
,”
Int. J. Prod. Res.
0020-7543,
32
(
8
), pp.
1879
1895
.
48.
Sung
,
R. C. W.
,
Corney
,
J. R.
, and
Clark
,
D. E. R.
, 2001, “
Automatic Assembly Feature Recognition and Disassembly Sequence Planning
,”
J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
4
), pp.
291
299
.
49.
Zha
,
X. F.
, 2004, “
Integration of the STEP-Based Model and XML schema With the Fuzzy Analytic Hierarchy Process for Multi-Agent Based Assembly Evaluation
,” J. Intell. Manuf., (in print). (See also 17.)
50.
Boothroyd
,
G.
, and
Alting
,
L.
, 1992, “
Design for Assembly and Disassembly
,”
CIRP Ann.
0007-8506,
41
(
2
), pp.
625
636
.
51.
Chuang
,
P. T.
, 2001, “
Combining the Analytic Hierarchy Process and Quality Function Deployment for a Location Decision From a Requirement Perspective
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
18
, pp.
842
849
.
52.
Hsu
,
W.
,
Lee
,
C. S. G.
, and
Su
,
S. F.
, 1993, “
Feedback Approach to Design for Assembly by Evaluation of Assembly Plan
,”
Comput.-Aided Des.
0010-4485,
25
(
7
), pp.
395
410
.
53.
ISO/CD TS 10303-203, Industrial automation systems and integration — Product data representation and exchange - Part 203: Application protocol: Configuration controlled 3D design of mechanical parts and assemblies.
54.
Liu
,
T. H.
, 1992, “
An Object-Oriented Assembly Applications Methodology for PDES/STEP Based Mechanical Systems
, Ph.D. thesis, The University of Iowa.
55.
Molloy
,
E.
,
Yang
,
H.
, and
Brown
,
J.
, 1991, “
Design for Assembly With Concurrent Engineering
,”
CIRP Ann.
0007-8506,
40
(
1
), pp.
107
110
.
56.
MOKA, 1999, A Framework for Structuring and Representing Engineering Knowledge, http://www.kbe.coventry.ac.uk/moka/meta.htmhttp://www.kbe.coventry.ac.uk/moka/meta.htm
57.
Sudarsan
,
R.
,
Baysal
,
M.
,
Roy
,
U.
,
Foufou
,
S.
,
Bock
,
C.
,
Eswaren
,
S.
,
Lyons
,
K.
, and
Sriram
,
R. D.
, 2004, “
Information Models for Product Representation: Core and Assembly Models
,” National Institute of Standards and Technology, NISTIR 7173, Gaithersburg, MD.
58.
Zha
,
X. F.
,
Sebti
,
F.
,
Sudarsan
,
R.
, and
Sriram
,
R. D.
, 2004, “
Analysis and Evaluation of STEP-Based Electro-Mechanical Assemblies: An Integrated Fuzzy AHP Approach
,”
Proceedings of ASME DETC 2004
, Paper No. DETC CIE-57708.
You do not currently have access to this content.