This paper describes recently developed procedures for local conformal refinement and coarsening of all-hexahedral unstructured meshes. Both refinement and coarsening procedures take advantage of properties found in the dual or “twist planes” of the mesh. A twist plane manifests itself as a conformal layer or sheet of hex elements within the global mesh. We suggest coarsening techniques that will identify and remove sheets to satisfy local mesh density criteria while not seriously degrading element quality after deletion. A two-dimensional local coarsening algorithm is introduced. We also explain local hexahedral refinement procedures that involve both the placement of new sheets, either between existing hex layers or within an individual layer. Hex elements earmarked for refinement may be defined to be as small as a single node or as large as a major group of existing elements. Combining both refinement and coarsening techniques allows for significant control over the density and quality of the resulting modified mesh.

1.
Carey
,
G.
, 1997,
Computational Grids: Generation, Adaptation, and Solution Strategies
,
Taylor & Francis
, New York.
2.
Plaza
,
A.
, and
Cary
,
G.
, 1996, “
About Local Refinement of Tetrahedral Grids
,” in
5th International Meshing Roundtables
, Pittsburgh, PA, Sandia National Laboratories, pp. 123–136..
3.
Plaza
,
A.
, and
Rivara
,
M.-C.
, 2003, “
Mesh Refinement Based on the 8-Tetrahedra Longest-Edge Partition
,” in
12th International Meshing Roundtable
,
Santa Fe
, NM, Sandia National Laboratories, pp.
67
78
.
4.
De Cougny
,
H. L.
, and
Shephard
,
M. S.
, 1999, “
Parallel Refinement and Coarsening of Tetrahedral Meshes
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
1101
1125
.
5.
Bey
,
J.
, 1995, “
Tetrahedral Grid Refinement
,”
Computing
,
55
, pp.
355
378
.
6.
Grosso
,
R.
,
Lurig
,
C.
, and
Ertl
,
T.
, 1997, “
The Multilevel Finite Element Method for Adaptive Mesh Optimization and Visualization of Volume Data
,” in
Eighth IEEE Visualization
1997 (VIS '97), Phoenix, AZ, pp.
387
394
.
7.
Molino
,
N.
,
et al.
, 2003, “
A Crystalline, Red Green Strategy for Meshing Highly Deformable Objects With Tetrahedra
,” in
12th International Meshing Roundtable
,
Santa Fe
, NM, Sandia National Laboratories, pp.
103
114
.
8.
Tchon
,
K.-F.
,
Hirsch
,
C.
, and
Schneiders
,
R.
, 1997, “
Octree-Based Hexahedral Mesh Generator for Viscous Flow Simulations
,” in
13th AIAA Computational Fluid Dynamics Conference
, No. AIAA-97-1980,
Snowmass
, CO.
9.
Marechal
,
L.
, 2001, “
A New Approach to Octree-Based Hexahedral Meshing
,” in
10th International Meshing Roundtable
,
Newport Beach
, CA, Sandia National Laboratories, pp.
209
221
.
10.
Schneiders
,
R.
, 2000, “
Octree-Based Hexahedral Mesh Generation
,”
Int. J. Comput. Geom. Appl.
0218-1959,
10
, No.
4
, pp.
383
398
.
11.
Kwak
,
D-Y.
, and
Im
,
Y-T.
, 2002, “
Remeshing for Metal Forming Simulations—Part II: Three Dimensional Hexahedral Mesh Generation
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
, pp.
2501
2528
.
12.
Li
,
Hua
, and
Cheng
,
Gengdong
, 2000, “
New Method for Graded Mesh Generation of All Hexahedral Finite Elements
,”
Comput. Struct.
0045-7949,
76
, pp.
729
740
.
13.
Tchon
,
K.-F.
,
Dompierre
,
J.
, and
Camarero
,
R.
, 2002, “
Conformal Refinement of All-Quadrilateral and All-Hexahedral Meshes According to an Anisotropic Metric
,” in
11th International Meshing Roundtable
,
Ithaca
, New York, Sandia National Laboratories, pp.
231
242
.
14.
Harris
,
N. J.
, “
Conformal Refinement of All-Hexahedral Finite Element Meshes
,” M.S. thesis, Brigham Young University, Provo, UT, 2004.
15.
Tautges
,
T.
,
Blacker
,
T.
, and
Mitchell
,
S.
, 1996, “
The Whisker Weaving Algorithm: A Connectivity-Based Method for All-Hexahedral Finite Element Meshes
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
3327
3349
.
16.
Murdoch
,
P.
,
Benzley
,
S.
,
Blacker
,
T.
, and
Mitchell
,
S. A.
, 1997, “
The Spatial Twist Continuum: A Connectivity Based Method for Representing All-Hexahedral Finite Element Meshes
,”
Finite Elem. Anal. Design
0168-874X,
28
, pp.
137
149
.
17.
CUBIT
,
Version 9.1 Users Guide
,
Sandia National Laboratories
, (2004) URL: http://cubit.sandia.gov/help-version9.1/cubithelp.htmlhttp://cubit.sandia.gov/help-version9.1/cubithelp.html.
18.
Borden
,
M.
,
Benzley
,
S. E.
,
Mitchell
,
S. A.
,
White
,
D. R.
, and
Meyers
,
R.
, 2000, “
The Cleave and Fill Tool: An All-Hexahedral Refinement Algorithm for Swept Meshes
,”
Proceedings 9th International Meshing Roundtable
,
SNL
, New Orleans, LA, pp.
69
76
.
19.
Harrris
,
N. J.
,
Benzley
,
S. E.
, and
Owen
,
S. J.
, 2004, “
Conformal Refinement of All-Hexahedral Element Meshes Based on Multiple Twist Plane Insertion
,” in
Proceedings, 13th International Meshing Roundtable
,
SNL
, Williamsburg, VA, pp.
157
167
.
20.
Melander
,
D. J.
,
Tautges
,
T. J.
, and
Benzley
,
S. E.
, 1997, “
Generation of Multi-Million Element Meshes for Solid Model-Based Geometries: The Dicer Algorithm
,”
AMD-Vol. 220 Trends in Unstructured Mesh Generation
,
ASME
, pp.
131
135
.
21.
Benzley
,
S. E.
,
Borden
,
M.
, and
Mitchell
,
S. A.
, 2001, “
A Refinement Technique for All-Hexahedral Adaptive Meshing
,”
Computational Fluid and Solid Mechanics, Proceedings, First MIT Conference on Computational Fluid and Solid Mechanics
,
Elsevier Science
, pp.
1519
1523
.
22.
Knupp
,
P.
, 2003, “
Algebraic Mesh Quality Metrics for Unstructured Initial Meshes
,”
Finite Elem. Anal. Design
0168-874X,
39
, pp.
217
241
.
23.
Brewer
,
M.
,
Diachin
,
L.
,
Knupp
,
P.
,
Leurent
,
T.
, and
Melander
,
D.
, “
The Mesquite Mesh Quality Improvement Toolkit
,” in
Proceedings of the 12th International Meshing Roundtable
,
SNL
, Albuquerque, NM, pp.
239
250
.
You do not currently have access to this content.