We investigate how to define a triangulated ruled surface interpolating two polygonal directrices that will meet a variety of optimization objectives which originate from many CAD/CAM and geometric modeling applications. This optimal triangulation problem is formulated as a combinatorial search problem whose search space however has the size tightly factorial to the numbers of points on the two directrices. To tackle this bound, we introduce a novel computational tool called multilayer directed graph and establish an equivalence between the optimal triangulation and the single-source shortest path problem on the graph. Well known graph search algorithms such as the Dijkstra’s are then employed to solve the single-source shortest path problem, which effectively solves the optimal triangulation problem in O(mn) time, where n and m are the numbers of vertices on the two directrices respectively. Numerous experimental examples are provided to demonstrate the usefulness of the proposed optimal triangulation problem in a variety of engineering applications.

1.
Han
,
Z.
,
Yang
,
D. C. H.
, and
Chuang
,
J.-J.
, 2001, “
Isophote-Based Ruled Surface Approximation of Free-Form Surfaces and its Application in NC Machining
,”
Int. J. Prod. Res.
0020-7543,
39
(
9
), pp.
1911
1930
.
2.
Tokuyama
,
Y.
, and
Seockhoon
,
B.
, 1999, “
An Approximate Method for Generating Draft on a Free-Form Surface
,”
Visual Comput.
0178-2789,
15
(
1
), pp.
1
8
.
3.
Shin
,
H.
, and
Cho
,
S. K.
, 2002, “
Directional Offset of a 3D Curve
,” in
Proceedings of the Seventh ACM symposium on Solid modeling and applications
, pp.
329
335
, ACM.
4.
DoCarmo
,
M.
, 1976,
Differential Geometry of Curves and Surfaces
,
Prentice-Hall
, Englewood Cliffs, NJ.
5.
Pottmann
,
H.
, and
Wallner
,
J.
, 1999, “
Approximation Algorithms for Developable Surfaces
,”
Comput. Aided Geom. Des.
0167-8396,
16
(
6
), pp.
539
556
.
6.
Peternell
,
M.
, 2004, “
Recognition and Reconstruction of Developable Surfaces From Point
,” in
Proceedings of the Geometric Modeling and Processing 2004
,
IEEE Computer Society
, pp.
301
310
.
7.
Smith
,
D. R.
, 1998,
Variational Methods in Optimization
,
Dover
, New York, ISBN 0-486-40455-2.
8.
Belegundu
,
A. D.
, and
Chandrupatla
,
T. R.
, 1999,
Optimization Concepts and Applications in Engineering
,
Prentice-Hall
, Upper Saddle River, N.J.
9.
Kass
,
M.
,
Witkin
,
A.
, and
Terzopoulos
,
D.
, 1988, “
Snakes: Active Contour Models
,”
Int. J. Comput. Vis.
0920-5691,
1
, pp
321
332
.
10.
Tang
,
K.
, and
Wang
,
C. C. L.
, 2005, “
Modeling Developable Folds on a Strip
,”
J. Comput. Inf. Sci. Eng.
1530-9827,
5
(
1
), pp.
35
47
.
11.
Watts
,
E. F.
, and
Rule
,
J. T.
, 1946,
Descriptive Geometry
,
Prentice-Hall
, New York.
12.
Cormen
,
T. H.
,
Leiserson
,
C. E.
,
Rivest
,
R. L.
, and
Stein
,
C.
, 2001,
Introduction to Algorithms
,
2nd ed.
,
MIT Press
, Cambridge.
13.
Fuchs
,
H.
,
Kedem
,
Z. M.
, and
Uselton
,
S. P.
, 1977, “
Optimal Surface Reconstruction From Planar Contours
,”
Commun. ACM
0001-0782,
20
(
10
), pp.
693
702
.
14.
Monterde
,
J.
, 2004, “
Bézier Surfaces of Minimal Area: the Dirichlet Approach
,”
Comput. Aided Geom. Des.
0167-8396,
21
, pp.
117
136
.
15.
Frey
,
W. H.
, 2004, “
Modeling Buckled Developable Surfaces by Triangulation
,”
Comput.-Aided Des.
0010-4485,
36
(
4
), pp.
299
313
.
16.
Moreton
,
H. P.
, and
Sequin
,
C. H.
, 1992, “
Functional Optimization for Fair Surface Design
,”
SIGGRAPH 92 Proceedings
, pp.
167
176
.
17.
Hildebrandt
,
K.
, and
Polthier
,
K.
, 2004, “
Anisotropic Filtering of Non-Linear Surface Features
,”
Comput. Graph. Forum
1067-7055,
23
(
3
), pp.
391
400
.
18.
Au
,
C. K
, and
Woo
,
T. C.
, 2004, “
Ribbons: Their Geometry and Topology
,”
Comput.-Aided Des.
0010-4485,
1
, pp.
197
206
, CAD’04 Conference, Pattaya Beach, Thailand, May 24–28.
19.
Wang
,
C. C. L.
,
Chang
,
T. K. K.
, and
Yuen
,
M. M. F.
, 2003, “
From Laser-Scanned Data to Feature Human Model: a System Based on Fuzzy Logic Concept
,”
Comput.-Aided Des.
0010-4485,
35
(
3
), pp.
241
253
.
20.
Stollnitz
,
E. J.
,
DeRose
,
T. D.
, and
Salesin
,
D. H.
, 1996,
Wavelets for Computer Graphics: Theory and Applications
,
Morgan Kaufmann
, California.
You do not currently have access to this content.