An accurate three-dimensional (3D) mesh of biological models is fundamental for analysis and treatment simulations. Generally noninvasive magnetic resonance image (MRI) data are taken as the input for the simulation. The topologic relationship of anatomy is extracted from MR images through segmentation processes. To accelerate the biological modeling phase, template surface and volume meshes are generated based on MR images and∕or anatomical atlases (e.g., brain atlas, etc.). The boundary surfaces are extracted from segmented regions on the image slices, which are used as the input for 3D volume mesh generation. An intuitive graphic user interface was developed for biomedical applications. It integrated MRI data manipulation with surface mesh and volume mesh generators. Image volume and mesh geometries are registered in the MRI working space. As the core component of the system, a robust 3D mesh generation approach is presented. It is capable of describing irregular geometries exhibiting concave and convex surfaces. It uses deltahedral building blocks for volume mesh generation and creates high-quality, regular-shaped tetrahedral mesh elements. The approach supports multiple levels of localized refinement without reducing the overall mesh quality. The validity of this new mesh generation strategy and implementation is demonstrated via the medical applications in brain vasculature modeling, multimodality imaging for breast cancer detection, and numerous anatomically accurate models presented. Multiple material boundaries are preserved in each mesh with fidelity.

1.
Sullivan
,
J. M.
, Jr.
, and
Zhang
,
Q.
, 1997, “
Adaptive Mesh Generation Using Offsetting Technique
,”
Journal of Finite Element Analysis and Design
,
25
, pp.
275
295
.
2.
Beek
,
M.
,
Koolstra
,
J. H.
,
Ruijven
,
L. J.
,
et al.
, 2000, “
Three-Dimensional Finite Element Analysis of the Human Temporomandibular Joint Disc
,”
J. Biomech.
0021-9290,
33
, pp.
307
316
.
3.
Lin
,
C.
,
Chang
,
C.
,
Cheng
,
C.
,
et al.
, 1999, “
Automatic Finite Element Mesh Generation for Maxillary Second Premolar
,”
Comput. Methods Programs Biomed.
0169-2607,
59
, pp.
187
195
.
4.
Saxena
,
R.
,
Keller
,
T. S.
, and
Sullivan
,
J. M.
, 1999, ”
A Three-Dimensional Finite Element Scheme to Investigate the Apparent Mechanical Properties of Trabecular Bone
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
2
, pp.
285
294
.
5.
Cody
,
D. D.
,
Gross
,
G. J.
,
Hou
,
F. J.
,
et al.
, 1999, ”
Femoral Strength is Better Predicted by Finite Element Models than QCT and DXA
,”
J. Biomech.
0021-9290,
32
, pp.
1013
1020
.
6.
Rick
,
K. R.
,
Hartov
,
A.
,
Roberts
,
D. W.
,
Lunn
,
K. E.
,
Sun
,
H.
, and
Paulsen
,
K. D.
, 2003, ”
Graphical User Interface for Intraoperative Neuroimage Updating
,”
Proceedings of SPIE Medical Imaging, Visualization, Display and Image-Guided Procedures
,
5029
pp.
210
221
.
7.
Owen
,
S. J.
,
White
,
D. R.
, and
Tautges
,
T. J.
, 2002, ”
Facet-Based Surfaces for 3D Mesh Generation
, ”
11TH International Meshing Roundtable
.
8.
Cebral
,
J. R.
, and
Lohner
,
R.
, 2001, ”
From Medical Images to Anatomically Accurate Finite Element Grids
,”
Int. J. Numer. Methods Eng.
0029-5981,
51
, pp.
985
1008
.
9.
Ferrant
,
M.
,
Nabavi
,
A.
,
Macq
,
B.
,
McL. Black
,
P.
,
Jolesz
,
F. A.
,
Kikinis
,
R.
, and
Warfield
,
S. K.
, 2002, “
Serial Registration of Intraoperative MR Images of the Brain
,”
Med. Image Anal
1361-8415,
6
,(
4
), pp.
337
359
.
10.
Zhang
,
J. Q.
,
Sullivan
,
J. M.
, Jr.
,
Yu
,
H.
, and
Wu
,
Z.
, 2005, “
Image Guided Multi-Modality Registration and Visualization for Breast Cancer Detection
,”
SPIE International Symposium, Medical Imaging
. No.
5744
5714
.
11.
Wu
,
Z.
, and
Sullivan
,
J. M.
, Jr.
, 2003, “
Multiple Material Marching Cubes Algorithm
,”
Int. J. Numer. Methods Eng.
0029-5981,
58
, pp.
189
207
.
12.
Huang
,
W.
,
Sullivan
,
J. M.
, Jr.
,
Ludwig
,
R.
,
Kulkarni
,
P.
,
Zhang
,
J. Q.
, and
King
,
J. A.
, 2004, “
Stair-Stepped Removal via Automatic Linearization for Marching Cubes Formulations
,”
Proc. 12th Intl. Soc. Mag. Reson. Med.
, No.
756
.
13.
Taubin
,
G.
,
Zhang
,
T.
, and
Golub
,
G.
, 1996, “
Optimal Surface Smoothing as Filter Design
,”
Proceedings of the 4th European Conference on Computer Vision—Vol. I
, pp.
283
292
.
14.
Boissonnat
,
J.-D.
, 1988, ”
Shape Reconstruction from Planar Cross Sections
,”
Comput. Vis. Graph. Image Process.
0734-189X,
44
, (
1
), pp.
1
-
29
.
15.
Baker
,
T. J
, 1988, “
Automatic Mesh Generation for Complex Three-Dimensional Regions Using a Constrained Delaunay Triangulation
,”
Eng. Comput.
0177-0667
5
, pp. 161–165.
16.
Lohner
,
R.
, and
Parikh
,
P.
, 1988, “
Generation of Three Dimensional Unstructured Grids by the Advancing Front Method
,”
Int. J. Numer. Methods Fluids
0271-2091
8
, pp.
1135
1149
.
17.
Buratynski
,
E. K.
, 1988, “
A Three-Dimensional Unstructured Mesh Generator for Arbitrary Internal Boundaries
,”
Proceedings of Numerical Grid Generation in Computational Fluid Mechanics ‘88
,
Pineridge Press
, pp.
621
631
.
18.
Fuchs
,
A.
, 1998, “
Automatic Grid Generation with Almost Regular Delaunay Tetrahedra
,”
7th International Meshing Roundtable
, pp.
133
148
.
19.
Schneiders
,
R.
, 1995, “
Automatic Generation of Hexahedral Finite Element Meshes
,”
4th International Meshing Roundtable
, pp.
103
114
.
20.
Berti
,
G.
, 2004, “
Image-Based Unstructured 3D Mesh Generation for Medical Applications
,”
Europena Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS July
.
21.
Nielson
,
G. M.
, and
Sung
,
J.
, 1997, “
Interval Volume Tetrahedrization
,”
IEEE Visualization: Proceedings of 8th Conference on Visualization
.
22.
Senechal
,
M.
, 1981, “
Which Tetrahedra Fill Space?
,”
Math. Mag.
0025-570X,
54
, pp.
227
243
.
23.
Ungor
,
A.
, 2001, “
Tiling 3D Euclidean Space with Acute Tetrahedra
,”
Proceedings of the Canadian Conference on Computational Geometry, Aug
.
24.
Sullivan
,
J. M.
, Jr.
,
Charron
,
G.
, and
Paulsen
,
K. D.
, 1997. “
A Three Dimensional Mesh Generator for Arbitrary Multiple Material Domains
,”
Journal of Finite Elements in Analysis and Design
,
25
(
2
), pp.
219
241
.
25.
Naylor
,
D. J.
, 1999, “
Filling Space With Tetraahedra
,”
Int. J. Numer. Methods Eng.
0029-5981,
44
, pp.
1383
1395
.
26.
Gasson
,
P. C.
, 1983,
Geometry of Spatial Forms
,
Ellis Horwood Limited, Wiley
, New York.
27.
Woods
,
R. P.
,
Grafton
,
S. T.
,
Watson
,
J. D. G.
,
Sicotte
,
N. L.
, and
Mazziotta
,
J. C.
, 1998, “
Automated Image Registration: II. Intersubject Validation of Linear and Nonlinear Models
,”
J. Comput. Assist. Tomogr.
0363-8715,
22
, pp.
153
165
.
28.
Miga
,
M. I.
,
Roberts
,
D. W.
,
et al.
, 2001, “
Modeling of Retraction and Resection for Intraoperative Updating of Images
,”
Neurosurgery
0148-396X
49
(
1
), pp.
75
84
.
29.
Zhang
,
J. Q.
,
Sullivan
,
J. M.
, Jr.
,
Ghadyani
,
H. R.
,
Benz
,
U.
,
Wu
,
Z.
, and
Meyer
,
D. M.
, 2004, “
MR Image Guided 3D Registration and Mesh Generation for Brain Vasculature Model
,”
Proceedings of the 12th Intl. Soc. Mag. Reson. Med.
, No.
2244
.
30.
Van Houten
,
E. E. W.
,
Miga
,
M. I.
,
et al.
, 2001, “
Three-Dimensional Subzone-Based Reconstruction Algorithm for MR Elastography
,”
Magn. Reson. Med.
0740-3194
45
(
5
), pp.
827
837
.
31.
Paulsen
,
K. D.
, and
Meaney
,
P. M.
, 1999, “
Nonactive Antenna Compensation for Fixed-Array Microwave Imaging—Part I: Model Development
,”
IEEE Trans. Med. Imaging
0278-0062,
18
, pp.
496
507
.
You do not currently have access to this content.