Computer-aided design (CAD) systems have become parametric, basing shape design on constraints and design feature operations. We review the development of constraint-based parametric CAD, explaining some of the foundational issues as well as giving an outlook on possible future directions of development.

1.
Voelcker
,
H.
, and
Requicha
,
A.
, 1977, “
Geometrical Modeling of Mechanical Parts and Processes
,”
IEEE Computer
,
12
, pp.
48
57
.
2.
Braid
,
I.
, 1975, “
The Synthesis of Solids Bounded by Many Faces
,”
Commun. ACM
0001-0782,
18
, pp.
209
216
.
3.
Rossignac
,
J.
, 1985, “
Blending and Offseting Solid Models
,” Ph.D. thesis, University of Rochester, Department of ME.
4.
Requicha
,
A.
, 1977, “
Mathematical Models of Rigid Solids
,” Technical Report PAP Tech Memo 28,
University of Rochester
.
5.
Shapiro
,
V.
, and
Vossler
,
D.
, 1993, “
Separation for Boundary to CSG Conversion
,”
ACM Trans. Graphics
0730-0301,
12
, pp.
35
55
.
6.
Requicha
,
A.
, and
Voelcker
,
H.
, 1985, “
Boolean Operations in Solid Modeling: Boundary Evaluation and Merging Algorithms
,”
Proc. IEEE
0018-9219,
73
, pp.
30
44
.
7.
Hoffmann
,
C. M.
, 1989, “
Geometric and Solid Modeling
,” Morgan Kaufmann, San Mateo, CA.
8.
Chen
,
X.
, 1995, “
Representation, Evaluation and Editing of Feature-Based and Constraint-Based Design
,” Ph.D. thesis, Purdue University, Department of CS.
9.
Shapiro
,
V.
, and
Vossler
,
D.
, 1995, “
What is a Parametric Family of Solids?
,” in
Proc 3rd ACM Symp on Solid Modeling
.
10.
Hoffmann
,
C. M.
, and
Joan-Arinyo
,
R.
, 2002, “
Parametric Modeling
,” in
Handbook of CAGD
, edited by
G.
Farin
,
J.
Hoschek
,
M.-S.
Kim
,
Elsevier
, New York.
11.
Bouma
,
W.
,
Fudos
,
I.
,
Hoffmann
,
C. M.
,
Cai
,
J.
, and
Paige
,
R.
, 1995, “
A Geometric Constraint Solver
,”
Comput.-Aided Des.
0010-4485,
27
, pp.
487
501
.
12.
Owen
,
J.
, 1991, “
Algebraic Solution for Geometry from Dimensional Constraints
,”
ACM Symp. Found. of Solid Modeling
,
Austin
, TX, pp.
397
407
.
13.
Fudos
,
I.
, 1995, “
Constraint Solving for Computer-Aided Design
,” Ph.D. thesis, Purdue University, Dept. of CS.
14.
Fudos
,
I.
, and
Hoffmann
,
C. M.
, 1996, “
Correctness Proof of a Geometric Constraint Solver
,”
Int. J. Comput. Geom. Appl.
0218-1959,
6
, pp.
405
420
.
15.
Hoffmann
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
, 2001, “
Decompostion Plans for Geometric Constraint Systems, Part I: Performance Measurements for CAD
,”
J. Symb. Comput.
0747-7171,
31
, pp.
367
408
.
16.
Hoffmann
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
, 2001, “
Decompostion Plans for Geometric Constraint Problems, Part II: New Algorithms
,”
J. Symb. Comput.
0747-7171,
31
, pp.
409
427
.
17.
Sitharam
,
M.
, 2004, “
Combinatorial Approaches to Geometric Constraint Solving: Problems, Progress and Directions
,” in
Computer aided design and manufacturing
, edited by
D.
Dutta
,
R.
Janardan
, and
M.
Smid
,
AMS∕DIMACS
Volume.
18.
Hoffmann
,
C. M.
, and
Peters
,
J.
, 1995, “
Tschirnhaus Cubics Analyzed for a Constraint Solver
,” in
Mathematical Methods in Computer Aided Geometric Design
, edited by
M.
Dahlen
,
T.
Lyche
, and
L.
Schumaker
,
Vanderbilt Press
, Nashville, TN.
19.
Fudos
,
I.
, and
Hoffmann
,
C. M.
, 1996, “
Constraint-Based Parametric Conics for CAD
,”
Comput.-Aided Des.
0010-4485,
28
, pp.
91
100
.
20.
Hoffmann
,
C. M.
, and
Chiang
,
C.-S.
, 2002, “
Variable-Radius Circles of Cluster Merging in Geometric Constraints. Part I: Translational Clusters
,”
Comput.-Aided Des.
0010-4485,
34
, pp.
787
797
.
21.
Hoffmann
,
C. M.
, and
Chiang
,
C.-S.
, 2002, “
Variable-Radius Circles of Cluster Merging in Geometric Constraints. Part II: Rotational Clusters
,”
Comput.-Aided Des.
0010-4485,
34
, pp.
799
805
.
22.
Hoffmann
,
C. M.
, and
Joan-Arinyo
,
R.
, 1997, “
Symbolic Constraints in Constructive Geometric Constraint Solving
,”
J. Symb. Comput.
0747-7171,
23
, pp.
287
300
.
23.
Hoffmann
,
C. M.
, and
Vermeer
,
P.
, 1994, “
Geometric Constraint Solving in R2 and R3
,” in
Computing in Euclidean Geometry
,
2nd edition
, edited by
D. Z.
Du
and
F.
Hwang
,
World Scientific
, Singapore.
24.
Durand
,
C.
, 1998, “
Symbolic and Numerical Techniques for Constraint Solving
,” Ph.D. thesis, Computer Science, Purdue University.
26.
Macdonald
,
I.
,
Pach
,
J.
, and
Theobald
,
T.
, 2001, “
Common Tangents to Four Unit Balls
,”
Discrete Comput. Geom.
0179-5376,
26
, pp.
1
17
.
27.
Gao
,
X.-S.
,
Hoffmann
,
C. M.
, and
Yang
,
W.-Q.
, 2002, “
Solving Spatial Basic Geometric Constraint Configurations with Locus Intersection
,” in
Proc. 7th ACM Symp. on Solid Modeling and Applications
,
ACM Press
, New York.
28.
Shah
,
J.
,
Hsiao
,
D.
, and
Leonard
,
J.
, 1992, “
A Systematic Approach for Design-Manufacturing Feature Mapping
,” in
Geometric Modeling for Product Realization
, edited by
P.
Wilson
,
M.
Wozny
, and
M.
Pratt
,
North Holland
, Amsterdam.
29.
Dedhia
,
H.
,
Pherwani
,
V.
, and
Shah
,
J.
, 1997, “
Dynamic Interfacing of Applications to Geometric Modelers via Neutral Protocol
,”
Comput.-Aided Des.
0010-4485,
29
, pp.
811
824
.
30.
Shah
,
J.
, 2001, “
Designing with Parametric Cad: Classification and Comparison of Construction Techniques
,” in
Geometric Modeling: Theoretical and Computational Basis Towards Advanced CAD Applications
, edited by
F.
Kimura
,
Kluwer
, Dordrecht, pp.
53
68
.
31.
Chen
,
X.
, and
Hoffmann
,
C. M.
, 1995, “
Towards Feature Attachment
,”
Comput.-Aided Des.
0010-4485,
27
, pp.
695
702
.
32.
Braid
,
I.
, 1997, “
Non-Local Blending of Boundary Models
,”
Comput.-Aided Des.
0010-4485,
29
, pp.
89
100
.
33.
Chen
,
X.
, and
Hoffmann
,
C. M.
, 1995, “
On Editability of Feature-Based Design
,”
Comput.-Aided Des.
0010-4485,
27
, pp.
905
914
.
34.
Kripac
,
J.
, 1993, “
Topological ID System—A Mechanism for Persistently Naming Topological Entities in History-Based Parametric Solid Models
,” Ph.D. thesis, Czech Technical University, Prague.
35.
Capoyleas
,
V.
,
Chen
,
X.
, and
Hoffmann
,
C. M.
, 1996, “
Generic Naming in Generative, Constraint-Based Design
,”
Comput.-Aided Des.
0010-4485,
28
, pp.
17
26
.
36.
Raghotama
,
S.
, and
Shapiro
,
V.
, 1998, “
Boundary Representation Deformation in Parametric Solid Modeling
,”
ACM Trans. Graphics
0730-0301,
17
, pp.
259
286
.
37.
Hoffmann
,
C. M.
, 1993, “
On the Semantics of Generative Geometry Representations
,” in
Proc. 19th ASME Design Automation Conference
, Vol.
2
, pp.
411
420
.
38.
Raghotama
,
S.
, and
Shapiro
,
V.
, 2000, “
Consistent Updates in Dual Representation Systems
,”
Comput.-Aided Des.
0010-4485,
32
, pp.
463
477
.
39.
Requicha
,
A.
, and
Voelcker
,
H.
, 1982, “
Solid Modeling—A Historical Summary and Contemporary Assessment
,”
IEEE Comput. Graphics Appl.
0272-1716,
2
, pp.
9
24
.
40.
Hoffmann
,
C. M.
, 2001, “
Robustness in Geometric Computation
,”
J. Comput. Inf. Sci. Eng.
1530-9827,
1
, pp.
143
156
.
41.
Hoffmann
,
C. M.
, and
Stewart
,
N.
, 2005, “
Accuracy and Semantics in Shape-Interrogation Applications
,”
Geometric Models
, Vol.
67
.
42.
Bronsvoort
,
W. F.
, and
Jansen
,
F. W.
, 1994, “
Multi-View Feature Modelling for Design and Assembly
,” in
Advances in Feature Based Manufacturing
, Manufacturing Research and Technology, 20, edited by
J. J.
Shah
,
M.
Mäntylä
, and
D. S.
Nau
,
Elsevier Science B. V.
, New York, Ch. 14, pp.
315
330
.
43.
de Kraker
,
J.
,
Dohmen
,
M.
, and
Bronsvoort
,
W. F.
, 1997, “
Maintaining Multiple Views in Feature Modeling
,” in
4th Symposium on Solid Modeling and Applications
, edited by
C. M.
Hoffmann
and
W. F.
Bronsvoort
, Atlanta, GA, pp.
123
130
.
44.
Hoffmann
,
C. M.
, and
Juan
,
R.
, 1992, “
Erep, an Editable, High-Level Representation for Geometric Design and Analysis
,” in
Geometric Modeling for Product Realization
, edited by
P.
Wilson
,
M.
Wozny
, and
M.
Pratt
,
North Holland
, Amsterdam, pp.
123
130
.
45.
Spitz
,
S.
, and
Rappoport
,
A.
, 2004, “
Integrated Feature-Based and Geometric CAD Data Exchange
,”
Proc. ACM Symp. Solid Modelingand Applic.
, edited by
G.
Elber
,
N.
Patrikalakis
, and
P.
Brunet
, pp.
183
190
.
You do not currently have access to this content.