We present a variational framework for rapid shape prototyping. The modeled shape is represented as a Catmull-Clark multiresolution subdivision surface which is interactively deformed by direct user input. Free-form design goals are formulated as constraints on the shape and the modeling problem is cast into a constrained optimization one. The focus of this paper is on handling multiresolution constraints of different kinds and on preserving surface details throughout the deformation process. Our approach eliminates the need for an explicit decomposition of the input model into frequency bands and the overhead associated with saving and restoring high-frequency detail after global shape fairing. Instead, we define a deformation vector field over the model and we optimize its energy. Surface details are considered as part of the rest shape and are preserved during free-form model editing. We explore approximating the solution of the optimization problem to various degrees to balance trade-offs between interactivity and accuracy of the results.

1.
Terzopoulos
,
D.
,
Platt
,
J.
,
Barr
,
A.
, and
Fleischer
,
K.
, 1987, “
Elastically deformable models
,” in
Proceedings of SIGGRAPH 87
,
ACM SIGGRAPH
, Addison Wesley, Reading, MA, pp.
205
214
.
2.
Kobbelt
,
L.
,
Bareuther
,
T.
, and
Seidel
,
H.-P.
, 2000, “
Multiresolution shape deformations for meshes with dynamic vertex connectivity
,” in
Proceedings of Eurographics 00
, pp.
249
260
.
3.
Biermann
,
H.
,
Kristjansson
,
D.
, and
Zorin
,
D.
, 2001, “
Approximate boolean operations on free-form solids
,” in
Proceedings of SIGGRAPH 01
,
ACM SIGGRAPH
, pp.
185
194
.
4.
Biermann
,
H.
,
Martin
,
I.
,
Zorin
,
D.
, and
Bernardini
,
F.
, 2002, “
Sharp features on multiresolution subdivision surfaces
,”
Graph. Models
,
64
(
2
), pp.
61
77
.
5.
Biermann
,
H.
,
Martin
,
I.
,
Bernardini
,
F.
, and
Zorin
,
D.
, 2002, “
Cut-and-paste editing of multiresolution surfaces
,” in
Proceedings of SIGGRAPH 02
,
ACM SIGGRAPH
, pp.
312
321
.
6.
Duchon
,
J.
, 1977,
Splines Minimizing Rotation-Invariant Semi-norms in Sobolev Spaces
,
Springer-Verlag
, New York.
7.
Meinguet
,
J.
, 1979, “
Multivariate interpolation at arbitrary points made simple
,”
J. Appl. Math. Phys.
,
30
, pp.
292
304
.
8.
Celniker
,
G.
, and
Gossard
,
D.
, 1991, “
Deformable curve and surface finite-elements for freeform shape design
,” in
Proceedings of SIGGRAPH 91
,
ACEM SIGGRAPH/Addison Wesley
, Reading, MA, pp.
257
265
.
9.
Kallay
,
M.
, 1993,
Constrained optimization in surface design
,
Springer-Verlag
, New York.
10.
Welch
,
W.
, and
Witkin
,
A.
, 1992, “
Variational surface modeling
,”
E. E.
Catmull
, editor,
Computer Graphics (SIGGRAPH ’92 Proceedings)
,
26
, pp.
157
166
, July.
11.
Halstead
,
M.
,
Kass
,
M.
, and
DeRose
,
T.
, 1993, “
Efficient, fair interpolation using Catmull-Clark surfaces
,” in
Computer Graphics Proceedings
,
Annual Conference Series
,
ACM Siggraph
, pp.
35
44
.
12.
Veltkamp
,
R. C.
, and
Wesselink
,
W.
, 1996, “
Variational modeling of triangular bezier surfaces
,” Technical Report UU-CS-1996-40,
Universiteit Utrecht
.
13.
Moreton
,
H.
, 1993, “
Minimum Curvature Variation Curves, Networks, and Surfaces for Fair Free-Form Shape Design
,” Ph.D. thesis, UC Berkeley.
14.
Moreton
,
H.
, and
Sequin
,
C.
, 1992, “
Functional optimization for fair surface design
,” in
Proceedings of SIGGRAPH 92
,
ACM SIGGRAPH
, pp.
167
176
.
15.
Greiner
,
G.
, 1994, “
Variational design and fairing of spline surfaces
,”
Comput. Graph. Forum
1067-7055,
13
, pp.
143
154
.
16.
Kuriyama
,
S.
, and
Tachibana
,
K.
, 1997, “
Polyhedra surface modeling with a diffusion system
,” in
Proceedings of Eurographics 97
, pp.
39
46
.
17.
Volpin
,
O.
,
Bercovier
,
M.
, and
Matskewich
,
T.
, 1999, “
A comparison of invarian energies for free-form surface construction
,”
Visual Comput.
0178-2789,
15
(
4
), pp.
199
210
.
18.
Kobbelt
,
L. P.
, 2000, “
Discrete fairing and variational subdivision for freeform surface design
,”
Visual Comput.
0178-2789,
16
(
3–4
), pp.
142
150
.
19.
Palazzi
,
L. F.
, and
Forsey
,
D. L.
, 1994, “
A multilevel approach to surface response in dynamically deformable models
,” in
Computer Animation Proceedings
,
Springer-Verlag
, New York, pp.
21
30
.
20.
Takahashi
,
S.
, 1998, “
Variational design of curves and surfaces using multiresolution constraints
,”
Visual Comput.
0178-2789,
14
(
5
), pp.
208
227
.
21.
Takahashi
,
S.
, 1999, “
Multiresolution constraints for designing subdivision surfaces via local smoothing
,” in
Proceedings of Pacific Graphics 99
,
IEEE
, New York, pp.
168
178
.
22.
Halstead
,
M.
, 1996, “
Efficient Techniques for Surface Design Using Constrained Optimization
,” Ph.D. thesis, UC Berkeley.
23.
Gortler
,
S. J.
, and
Cohen
,
M. F.
, 1995, “
Hierarchical and variational geometric modeling with wavelets
,” in
Proceedings Symposium on Interactive 3D Graphics
,
SIGGRAPH
.
24.
Warren
,
J.
, Draft: Subdivision schemes for variational splines.
25.
Weimer
,
H.
, 2000, “
Subdivision Schemes for Physical Problems
,” Ph.D. thesis, Rice University.
26.
Kobbelt
,
L.
, and
Schröder
,
P.
, 1998, “
A multiresolution framework for variational subdivision
,”
ACM Trans. Graphics
0730-0301,
17
(
4
), pp.
209
237
.
27.
Hackbusch
,
W.
, 1985,
Multi-Grid Methods and Applications
,
Springer-Verlag
, New York.
28.
Weimer
,
H.
, and
Warren
,
J.
, 1998, “
Subdivision schemes for thin plate splines
,” in
Proceedings of Eurographics 98
, pp.
303
313
.
29.
Lanczos
,
C.
, 1986,
The Variational Principles of Mechanics
,
Dover
, New York.
30.
Lounsbery
,
M.
,
DeRose
,
T.
, and
Warren
,
J.
, 1997, “
Multiresolution analysis for surfaces of arbitrary topological type
,”
ACM Trans. Graphics
0730-0301,
16
(
1
), pp.
34
73
.
31.
Pulli
,
K.
, and
Lounsbery
,
M.
, 1997, “
Hierarchical editing and rendering of subdivision surfaces
,” Technical Report UW-CSE-97-04-07, Dept. of CS&E,
University of Washington
, Seattle, WA.
32.
Zorin
,
D.
,
Schröder
,
P.
, and
Sweldens
,
W.
, 1997, “
Interactive multiresolution mesh editing
,”
Proceedings of SIGGRAPH 97
,
Los Angeles
, CA, pp.
259
268
.
33.
Catmull
,
E.
, and
Clark
,
J.
, 1978, “
Recursively generated B-spline surfaces on arbitrary topological meshes
,”
10
(
6
), pp.
350
355
.
You do not currently have access to this content.