This paper presents an optimization approach for the accurate evaluation of minimum-zone form tolerances from discrete coordinate measurement data. The approach minimizes the minimum-deviation objective function defined as the difference between the maximum and minimum distances of the measured coordinate data from the reference feature. The objective function is formulated as a function of rigid-body coordinate transformation parameters and involves fewer independent parameters than the existing tolerance evaluation algorithms. As a result, improved convergence efficiency and numerical stability are achieved. A standard direct search algorithm, the downhill simplex search algorithm, is employed to minimize the objective function. The least-squares estimates are employed as good initial conditions to facilitate convergence to the global solutions. A new method, named as the Median Technique, is implemented to well center the circularity measured data and well align the cylindricity measured data in order to provide valid least-squares estimates based on the Limacon approximation. Results from simulation and comparative studies have shown that the proposed method evaluates minimum-zone form tolerances with reliable accuracy.

1.
ASME Y14.5M-1994, Dimensioning and Tolerancing, The American Society of Mechanical Engineers, New York.
2.
Murthy
,
T. S. R.
, and
Abdin
,
S. Z.
,
1980
, “
Minimum Zone Evaluation of Surfaces
,”
Int. J. Mach. Tool Des. Res.
,
20
, pp.
123
136
.
3.
Kanada
,
T.
, and
Suzuki
,
S.
,
1993
, “
Evaluation of Minimum Zone Flatness by Means of Nonlinear Optimization Techniques and its Verification
,”
Precis. Eng.
,
15
, pp.
93
99
.
4.
Tsukada
,
T.
, and
Kanada
,
T.
,
1985
, “
Minimum Zone Evaluation of Cylindricity Deviation by Some Optimization Techniques
,”
Bull. Jpn. Soc. Precis. Eng.
,
19
, pp.
18
23
.
5.
Lai
,
H. Y.
,
Jywe
,
W. Y.
,
Chen
,
C. K.
, and
Liu
,
C. H.
,
2000
, “
Precision Modeling of Form Errors for Cylindricity Evaluation Using Genetic Algorithms
,”
Precis. Eng.
,
24
, pp.
310
319
.
6.
Carr
,
K.
, and
Ferreira
,
P.
,
1995
, “
Verification of Form Tolerances, Part I: Basic Issues, Flatness, and Straightness
,”
Precis. Eng.
,
17
, pp.
131
143
.
7.
Carr
,
K.
, and
Ferreira
,
P.
,
1995
, “
Verification of Form Tolerances, Part II: Cylindricity and Straightness of a Median Line
,”
Precis. Eng.
,
17
, pp.
144
156
.
8.
Wang
,
Y.
,
1992
, “
Minimum Zone Evaluation of Form Tolerances
,”
Manuf. Rev.
,
5
, pp.
213
220
.
9.
Sharma
,
R.
,
Rajagopal
,
K.
, and
Anand
,
S.
,
2000
, “
A Genetic Algorithm Based Approach for Robust Evaluation of Form Tolerances
,”
J. Manuf. Syst.
,
19
, pp.
46
57
.
10.
Choi
,
W.
, and
Kurfess
,
T. R.
,
1999
, “
Dimensional Measurement Data Analysis, Part 1: A Zone Fitting Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
238
245
.
11.
Choi
,
W.
, and
Kurfess
,
T. R.
,
1999
, “
Dimensional Measurement Data Analysis, Part 2: Minimum Zone Evaluation
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
246
250
.
12.
Traband
,
M. T.
,
Joshi
,
S.
,
Wysk
,
R. A.
, and
Cavalier
,
T. M.
,
1989
, “
Evaluation of Straightness and Flatness Tolerances Using the Minimum Zone
,”
Manuf. Rev.
,
2
, pp.
189
195
.
13.
Huang
,
S. T.
,
Fan
,
K. C.
, and
Wu
,
J. H.
,
1993
, “
A New Minimum Zone Method for Evaluating Straightness Errors
,”
Precis. Eng.
,
15
, pp.
158
165
.
14.
Huang
,
S. T.
,
Fan
,
K. C.
, and
Wu
,
J. H.
,
1993
, “
A New Minimum Zone Method for Evaluating Flatness Errors
,”
Precis. Eng.
,
15
, pp.
25
32
.
15.
Roy
,
U.
, and
Zhang
,
X.
,
1992
, “
Establishment of a Pair of Concentric Circles with the Minimum Radial Separation for Assessing Roundness Error
,”
Comput.-Aided Des.
,
24
, pp.
161
168
.
16.
Roy
,
U.
, and
Xu
,
Y.
,
1995
, “
Form and Orientation Tolerance Analysis for Cylindrical Surfaces in Computer-Aided Inspection
,”
Comp. Ind.
,
26
, pp.
127
134
.
17.
Lai
,
J. Y.
, and
Chen
,
I. H.
,
1996
, “
Minimum Zone Evaluation of Circles and Cylinders
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
435
451
.
18.
Hodgson
,
T. J.
,
Kay
,
M. G.
,
Mittal
,
R. O.
, and
Tang
,
S. Y.
,
1999
, “
Evaluation of Cylindricity Using Combinatorics
,”
IIE Trans.
,
31
, pp.
39
47
.
19.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed., Cambridge University Press, New York.
20.
Shunmugam
,
M. S.
,
1987
, “
New Approach for Evaluating Form Errors of Engineering Surfaces
,”
Comput.-Aided Des.
,
19
, pp.
368
374
.
21.
Shunmugam
,
M. S.
,
1986
, “
On Assessment of Geometric Errors
,”
Int. J. Prod. Res.
,
24
, pp.
413
425
.
22.
Cheraghi
,
S. H.
,
Lim
,
H. S.
, and
Motavalli
,
S.
,
1996
, “
Straightness and Flatness Tolerance Evaluation: An Optimization Approach
,”
Precis. Eng.
,
18
, pp.
30
37
.
23.
Damodarasamy
,
S.
, and
Anand
,
S.
,
1999
, “
Evaluation of Minimum Zone for Flatness by Normal Plane Method and Simplex Search
,”
IIE Trans.
,
31
, pp.
617
626
.
24.
Samuel
,
G. L.
, and
Shunmugam
,
M. S.
,
1999
, “
Evaluation of Straightness and Flatness Error Using Computational Geometric Techniques
,”
Comput.-Aided Des.
,
31
, pp.
829
843
.
25.
Samuel
,
G. L.
, and
Shunmugam
,
M. S.
,
2000
, “
Evaluation of Circularity from Coordinate and Form Data Using Computational Geometric Techniques
,”
Precis. Eng.
,
24
, pp.
251
263
.
26.
Jywe
,
W. Y.
,
Liu
,
C. H.
, and
Chen
,
C. K.
,
1999
, “
The Min-Max Problem for Evaluating the Form Error of a Circle
,”
Measurement
,
26
, pp.
273
282
.
27.
Rajagopal
,
K.
, and
Anand
,
S.
,
1999
, “
Assessment of Circularity Error Using a Selective Data Partition Approach
,”
Int. J. Prod. Res.
,
37
, pp.
3959
3979
.
28.
Yau
,
H. T.
, and
Menq
,
C. H.
,
1996
, “
A Unified Least-Squares Approach to the Evaluation of Geometric Errors Using Discrete Measurement Data
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
1269
1290
.
You do not currently have access to this content.