Abstract

Optimizing the geometry deformation characteristics in contact problems with random rough surfaces is an important component of improving product performance, such as assembly accuracy, sealing percolation, contact thermal resistance, and electrical resistance. Traditionally, the deformation is computed by numerically solving the partial differential equations that govern the contact problems. In the optimization process, the deformations under a variety of random rough surfaces need to be solved. It is computationally intensive and necessitates a surrogate model to approximate the numerical solutions. This study employs non-uniform rational B-splines (NURBS) to represent the geometries involved in the contact problem and proposes treating the NURBS control points as image pixels, treating the deformations of these points as image pixel values. Furthermore, an image generator-enhanced deep operator network (IGE-DeepONet) that leverages an image generator as a trunk net is proposed to predict the deformations and a concatenation-based information fusion mechanism between the trunk net and branch net of the DeepONet was developed to improve the prediction accuracy. Based on the contact problem between a smooth elastomer cube and a rigid cuboid with a random rough surface, it was demonstrated that the proposed IGE-DeepONet has smaller test error and reduced training time compared to the standalone image generator and the traditional DeepONet which uses a fully connected neural network as trunk net.

References

1.
Sun
,
Q.
,
Zhao
,
B.
,
Liu
,
X.
,
Mu
,
X.
, and
Zhang
,
Y.
,
2019
, “
Assembling Deviation Estimation Based on the Real Mating Status of Assembly
,”
Comput.-Aided Des.
,
115
, pp.
244
255
.
2.
Zeng
,
W.
, and
Rao
,
Y.
,
2019
, “
Modeling of Assembly Deviation With Considering the Actual Working Conditions
,”
Int. J. Precis. Eng. Manuf.
,
20
(
5
), pp.
791
803
.
3.
Zhang
,
F.
,
Liu
,
J.
,
Ding
,
X.
, and
Yang
,
Z.
,
2017
, “
An Approach to Calculate Leak Channels and Leak Rates Between Metallic Sealing Surfaces
,”
ASME J. Tribol.
,
139
(
1
), p.
011708
.
4.
Yang
,
Z.
,
Liu
,
J.
,
Ding
,
X.
, and
Zhang
,
F.
,
2019
, “
The Effect of Anisotropy on the Percolation Threshold of Sealing Surfaces
,”
ASME J. Tribol.
,
141
(
2
), p.
022203
.
5.
Panagouli
,
O. K.
,
Margaronis
,
K.
, and
Tsotoulidou
,
V.
,
2020
, “
A Multiscale Model for Thermal Contact Conductance of Rough Surfaces Under Low Applied Pressure
,”
Int. J. Solids Struct.
,
200–201
, pp.
106
118
.
6.
Ren
,
X.-J.
,
Dai
,
Y.-J.
,
Gou
,
J.-J.
, and
Tao
,
W.-Q.
,
2021
, “
Numerical Study on Thermal Contact Resistance of 8-Harness Satin Woven Pierced Composite
,”
Int. J. Therm. Sci.
,
159
, p.
106584
.
7.
Zhang
,
S.
,
Zhao
,
X.
,
Ye
,
M.
, and
He
,
Y.
,
2019
, “
Theoretical and Experimental Study on Electrical Contact Resistance of Metal Bolt Joints
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
9
(
7
), pp.
1301
1309
.
8.
Zhang
,
C.
, and
Ren
,
W.
,
2021
, “
Modeling of 3D Surface Morphologies for Predicting the Mechanical Contact Behaviors and Associated Electrical Contact Resistance
,”
Tribol. Lett.
,
69
(
1
), p.
20
.
9.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. Lond. Ser. Math. Phys. Sci.
,
295
(
1442
), pp.
300
319
.
10.
Persson
,
B. N. J.
,
2001
, “
Elastoplastic Contact Between Randomly Rough Surfaces
,”
Phys. Rev. Lett.
,
87
(
11
), p.
116101
.
11.
Hu
,
Y.
,
Barber
,
G. C.
, and
Zhu
,
D.
,
1999
, “
Numerical Analysis for the Elastic Contact of Real Rough Surfaces
,”
Tribol. Trans.
,
42
(
3
), pp.
443
452
.
12.
Pei
,
L.
,
Hyun
,
S.
,
Molinari
,
J. F.
, and
Robbins
,
M. O.
,
2005
, “
Finite Element Modeling of Elasto-Plastic Contact Between Rough Surfaces
,”
J. Mech. Phys. Solids
,
53
(
11
), pp.
2385
2409
.
13.
Hu
,
H.
,
Batou
,
A.
, and
Ouyang
,
H.
,
2022
, “
An Isogeometric Analysis Based Method for Frictional Elastic Contact Problems With Randomly Rough Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
394
, p.
114865
.
14.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39
), pp.
4135
4195
.
15.
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
John Wiley & Sons
,
Hoboken, NJ
.
16.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
17.
Alizadeh
,
R.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2020
, “
Managing Computational Complexity Using Surrogate Models: A Critical Review
,”
Res. Eng. Des.
,
31
(
3
), pp.
275
298
.
18.
Herrmann
,
L.
, and
Kollmannsberger
,
S.
,
2024
, “
Deep Learning in Computational Mechanics: A Review
,”
Comput. Mech.
,
74
(
2
), pp.
281
331
.
19.
Guo
,
H.
,
Zhuang
,
X.
,
Fu
,
X.
,
Zhu
,
Y.
, and
Rabczuk
,
T.
,
2023
, “
Physics-Informed Deep Learning for Three-Dimensional Transient Heat Transfer Analysis of Functionally Graded Materials
,”
Comput. Mech.
,
72
(
3
), pp.
513
524
.
20.
Jiang
,
Z.
,
Jiang
,
J.
,
Yao
,
Q.
, and
Yang
,
G.
,
2023
, “
A Neural Network-Based PDE Solving Algorithm With High Precision
,”
Sci. Rep.
,
13
(
1
), p.
4479
.
21.
Bai
,
J.
,
Rabczuk
,
T.
,
Gupta
,
A.
,
Alzubaidi
,
L.
, and
Gu
,
Y.
,
2023
, “
A Physics-Informed Neural Network Technique Based on a Modified Loss Function for Computational 2D and 3D Solid Mechanics
,”
Comput. Mech.
,
71
(
3
), pp.
543
562
.
22.
Zhu
,
Q.
,
Zhao
,
Z.
, and
Yan
,
J.
,
2023
, “
Physics-Informed Machine Learning for Surrogate Modeling of Wind Pressure and Optimization of Pressure Sensor Placement
,”
Comput. Mech.
,
71
(
3
), pp.
481
491
.
23.
Taghizadeh
,
M.
,
Nabian
,
M. A.
, and
Alemazkoor
,
N.
,
2024
, “
Multi-Fidelity Physics-Informed Generative Adversarial Network for Solving Partial Differential Equations
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
11
), p.
111003
.
24.
Faroughi
,
S. A.
,
Pawar
,
N. M.
,
Fernandes
,
C.
,
Raissi
,
M.
,
Das
,
S.
,
Kalantari
,
N. K.
, and
Kourosh Mahjour
,
S.
,
2024
, “
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
4
), p.
040802
.
25.
Bhaduri
,
A.
,
Ramachandra
,
N.
,
Krishnan Ravi
,
S.
,
Luan
,
L.
,
Pandita
,
P.
,
Balaprakash
,
P.
,
Anitescu
,
M.
,
Sun
,
C.
, and
Wang
,
L.
,
2024
, “
Efficient Mapping Between Void Shapes and Stress Fields Using Deep Convolutional Neural Networks With Sparse Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
5
), p.
051008
.
26.
Chen
,
J.
,
Pierce
,
J.
,
Williams
,
G.
,
Simpson
,
T. W.
,
Meisel
,
N.
,
Prabha Narra
,
S.
, and
McComb
,
C.
,
2024
, “
Accelerating Thermal Simulations in Additive Manufacturing by Training Physics-Informed Neural Networks With Randomly Synthesized Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
1
), p.
011004
.
27.
Zhu
,
T.
,
Zheng
,
Q.
, and
Lu
,
Y.
,
2024
, “
Physics-Informed Fully Convolutional Networks for Forward Prediction of Temperature Field and Inverse Estimation of Thermal Diffusivity
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
11
), p.
111004
.
28.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
29.
Haghighat
,
E.
,
Raissi
,
M.
,
Moure
,
A.
,
Gomez
,
H.
, and
Juanes
,
R.
,
2021
, “
A Physics-Informed Deep Learning Framework for Inversion and Surrogate Modeling in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
379
, p.
113741
.
30.
Gao
,
H.
,
Sun
,
L.
, and
Wang
,
J.-X.
,
2021
, “
PhyGeoNet: Physics-Informed Geometry-Adaptive Convolutional Neural Networks for Solving Parameterized Steady-State PDEs on Irregular Domain
,”
J. Comput. Phys.
,
428
, p.
110079
.
31.
Janssen
,
J. A.
,
Haikal
,
G.
,
DeCarlo
,
E. C.
,
Hartnett
,
M. J.
, and
Kirby
,
M. L.
,
2024
, “
A Physics-Informed General Convolutional Network for the Computational Modeling of Materials With Damage
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
11
), p.
111002
.
32.
Lu
,
L.
,
Jin
,
P.
,
Pang
,
G.
,
Zhang
,
Z.
, and
Karniadakis
,
G. E.
,
2021
, “
Learning Nonlinear Operators Via DeepONet Based on the Universal Approximation Theorem of Operators
,”
Nat. Mach. Intell.
,
3
(
3
), pp.
218
229
.
33.
Wang
,
S.
,
Wang
,
H.
, and
Perdikaris
,
P.
,
2021
, “
Learning the Solution Operator of Parametric Partial Differential Equations With Physics-Informed DeepONets
,”
Sci. Adv.
,
7
(
40
), p.
eabi8605
.
34.
Lagaris
,
I. E.
,
Likas
,
A.
, and
Fotiadis
,
D. I.
,
1998
, “
Artificial Neural Networks for Solving Ordinary and Partial Differential Equations
,”
IEEE Trans. Neural Netw.
,
9
(
5
), pp.
987
1000
.
35.
Mezzadri
,
F.
,
Gasick
,
J.
, and
Qian
,
X.
,
2023
, “
A Framework for Physics-Informed Deep Learning Over Freeform Domains
,”
Comput.-Aided Des.
,
160
, p.
103520
.
36.
Chen
,
T.
, and
Chen
,
H.
,
1995
, “
Universal Approximation to Nonlinear Operators by Neural Networks With Arbitrary Activation Functions and Its Application to Dynamical Systems
,”
IEEE Trans. Neural Netw.
,
6
(
4
), pp.
911
917
.
37.
Zhang
,
J.
,
Zhang
,
S.
, and
Lin
,
G.
,
2022
, MultiAuto-DeepONet: A Multi-Resolution Autoencoder DeepONet for Nonlinear Dimension Reduction, Uncertainty Quantification and Operator Learning of Forward and Inverse Stochastic Problems,” Preprint arXiv: 2204.03193.
38.
Wu
,
K.
,
Yan
,
X.-B.
,
Jin
,
S.
, and
Ma
,
Z.
,
2024
, “
Capturing the Diffusive Behavior of the Multiscale Linear Transport Equations by Asymptotic-Preserving Convolutional DeepONets
,”
Comput. Methods Appl. Mech. Eng.
,
418
, p.
116531
.
39.
Oommen
,
V.
,
Shukla
,
K.
,
Goswami
,
S.
,
Dingreville
,
R.
, and
Karniadakis
,
G. E.
,
2022
, “
Learning Two-Phase Microstructure Evolution Using Neural Operators and Autoencoder Architectures
,”
Npj Comput. Mater.
,
8
(
1
), pp.
1
13
.
40.
He
,
J.
,
Koric
,
S.
,
Kushwaha
,
S.
,
Park
,
J.
,
Abueidda
,
D.
, and
Jasiuk
,
I.
,
2023
, “
Novel DeepONet Architecture to Predict Stresses in Elastoplastic Structures With Variable Complex Geometries and Loads
,”
Comput. Methods Appl. Mech. Eng.
,
415
, p.
116277
.
41.
Diakogiannis
,
F. I.
,
Waldner
,
F.
,
Caccetta
,
P.
, and
Wu
,
C.
,
2020
, “
ResUNet-a: A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data
,”
ISPRS J. Photogramm. Remote Sens.
,
162
, pp.
94
114
.
42.
Schwing
,
A. G.
, and
Urtasun
,
R.
,
2015
, Fully Connected Deep Structured Networks,” Preprint arXiv: 1503.02351.
43.
Sahin
,
T.
,
von Danwitz
,
M.
, and
Popp
,
A.
,
2024
, “
Solving Forward and Inverse Problems of Contact Mechanics Using Physics-Informed Neural Networks
,”
Adv. Model. Simul. Eng. Sci.
,
11
(
1
), p.
11
.
44.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “Generative Adversarial Nets,”
Advances in Neural Information Processing Systems
,
Z.
Ghahramani
,
M.
Welling
,
C.
Cortes
,
N.
Lawrence
, and
K. Q.
Weinberger
, eds.,
Curran Associates, Inc.
,
Montreal, QC, Canada
, pp.
2672
2680
.
45.
Pérez-Ràfols
,
F.
, and
Almqvist
,
A.
,
2019
, “
Generating Randomly Rough Surfaces With Given Height Probability Distribution and Power Spectrum
,”
Tribol. Int.
,
131
, pp.
591
604
.
46.
Lockyer
,
P. S.
,
2007
,
Controlling the Interpolation of NURBS Curves and Surfaces
,
University of Birmingham
,
Edgbaston, Birmingham, UK
.
47.
LeCun
,
Y.
, and
Bengio
,
Y.
,
1998
, “Convolutional Networks for Images, Speech, and Time Series,”
The Handbook of Brain Theory and Neural Networks
,
M. A.
Arbib
, ed.,
MIT Press
,
Cambridge, MA
, pp.
255
258
.
48.
Kingma
,
D. P.
, and
Ba
,
J.
,
2017
, “Adam: A Method for Stochastic Optimization,” Preprint arXiv: 1412.6980.
49.
Bradbury
,
J.
,
Frostig
,
R.
,
Hawkins
,
P.
,
Johnson
,
M. J.
,
Leary
,
C.
,
Maclaurin
,
D.
,
Necula
,
G.
, et al
,
2018
, “JAX: Composable Transformations of Python+ NumPy Programs.”
50.
Tan
,
L.
, and
Chen
,
L.
,
2022
, “Enhanced DeepONet for Modeling Partial Differential Operators Considering Multiple Input Functions,” Preprint arXiv: 2202.08942.
You do not currently have access to this content.