Abstract

Motion planning for mobile robots in dynamic and uncertain environments (e.g., in multirobot manufacturing) is challenging due to the stochastic nature of the problem. One common approach is to construct an initial plan to guide the robots, and as information is collected during execution, adjustments are made in real time to account for the impact of uncertainties. This approach, while feasible, leaves the burden of dynamic collision avoidance on controllers, which may not find collision-free and optimal control inputs fast enough. Additionally, the computational burden is exacerbated as the dimensionality of the workspace and the number and geometric complexity of obstacles increase. This article presents a novel probabilistic roadmap (PRM)-based offline motion planner for mobile robots traveling under uncertainty. The planner considers arbitrarily shaped holonomic robots in an environment with multiple static and dynamic obstacles. Since PRM is graph-based, we model the uncertainty by treating edge costs as general probability density functions whose exact profiles are related to the actuation characteristics of a mobile robot. The risk of success (i.e., no collision) per each action in the plan is lower-bounded by a user-defined value, allowing an informed choice between solution safety and quality. Simulations in various scenarios with both static and dynamic obstacles, and configuration spaces of different dimensions, show the effectiveness and flexibility of the planner, including scenarios contemplating prioritized multirobot planning. Finally, we show that, under practical conditions, the proposed planner can provide time-optimal and globally risk-bounded solutions.

References

1.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University Press
,
Cambridge
.
2.
Reif
,
J. H.
,
1979
, “
Complexity of the Mover’s Problem and Generalizations
,”
20th Annual Symposium on Foundations of Computer Science
,
San Juan, Puerto Rico
,
Oct. 29–31
, pp.
421
427
.
3.
Lozano-Perez
,
T.
,
1990
,
Spatial Planning: A Configuration Space Approach
, Autonomous Robot Vehicles,
Springer
,
New York
, pp.
259
271
. DOI: 10.1007/978-1-4613-8997-2_20
4.
Kavraki
,
L. E.
,
Svestka
,
P.
,
Latombe
,
J.-C.
, and
Overmars
,
M. H.
,
1996
, “
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces
,”
IEEE Trans. Rob. Autom.
,
12
(
4
), pp.
566
580
.
5.
LaValle
,
S. M.
, and
Kuffner
,
J. J.
,
2001
, “
Randomized Kinodynamic Planning
,”
Int. J. Rob. Res.
,
20
(
5
), pp.
378
400
.
6.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2011
, “
Sampling-Based Algorithms for Optimal Motion Planning
,”
Int. J. Rob. Res.
,
30
(
7
), pp.
846
894
.
7.
Erdmann
,
M.
, and
Lozano-Perez
,
T.
,
1987
, “
On Multiple Moving Objects
,”
Algorithmica
,
2
(
1
), pp.
477
521
.
8.
Fraichard
,
T.
,
1993
, “
Dynamic Trajectory Planning With Dynamic Constraints: A ‘State-Time Space’ Approach
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)
,
Yokohama, Japan
,
July 26–30
, Vol. 2, IEEE, pp.
1393
1400
. http://dx.fdoi.org/10.1109/IROS.1993.583794
9.
Van Den Berg
,
J. P.
, and
Overmars
,
M. H.
,
2005
, “
Roadmap-Based Motion Planning in Dynamic Environments
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
885
897
.
10.
Phillips
,
M.
, and
Likhachev
,
M.
,
2011
, “
SIPP: Safe Interval Path Planning for Dynamic Environments
,”
IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, IEEE, pp.
5628
5635
.
11.
Thrun
,
S.
,
2002
, “
Probabilistic Robotics
,”
Commun. ACM
,
45
(
3
), pp.
52
57
.
12.
Stone
,
R. F.
,
Wang
,
J.
, and
Sha
,
Z.
,
2023
, “
Time-Optimal Path Planning for Heterogeneous Robots in Swarm Manufacturing
,”
34th Annual International Solid Freeform Fabrication Symposium (SFF2023)
,
Austin, TX
,
Aug. 14–16
13.
Poudel
,
L.
,
Marques
,
L. G.
,
Williams
,
R. A.
,
Hyden
,
Z.
,
Guerra
,
P.
,
Fowler
,
O. L.
,
Sha
,
Z.
, and
Zhou
,
W.
,
2022
, “
Toward Swarm Manufacturing: Architecting a Cooperative 3D Printing System
,”
ASME J. Manuf. Sci. Eng.
,
144
(
8
), p.
081004
.
14.
Hart
,
P. E.
,
Nilsson
,
N. J.
, and
Raphael
,
B.
,
1968
, “
A Formal Basis for the Heuristic Determination of Minimum Cost Paths
,”
IEEE Trans. Syst. Sci. Cybernet.
,
4
(
2
), pp.
100
107
.
15.
Jasour
,
A. M.
, and
Williams
,
B. C.
,
2019
, “
Risk Contours Map for Risk Bounded Motion Planning Under Perception Uncertainties
,”
Robotics: Science and Systems XV
,
Freiburg im Breisgau, Germany
,
June 22–26
.
16.
Sloth
,
C.
, and
Wisniewski
,
R.
,
2015
, “
Safety Analysis of Stochastic Dynamical Systems
,”
IFAC-PapersOnLine
,
48
(
27
), pp.
62
67
.
17.
Miller
,
J.
,
Tacchi
,
M.
,
Henrion
,
D.
, and
Sznaier
,
M.
,
2024
, “
Unsafe Probabilities and Risk Contours for Stochastic Processes using Convex Optimization
,”
Preprint arXiv:2401.00815
. https://arxiv.org/abs/2401.00815
18.
Guthrie
,
J.
,
Kobilarov
,
M.
, and
Mallada
,
E.
,
2022
, “
Closed-Form Minkowski Sum Approximations for Efficient Optimization-Based Collision Avoidance
,”
American Control Conference (ACC)
,
Atlanta, GA
,
June 8–10
, pp.
3857
3864
.
19.
Rudnick-Cohen
,
E.
,
Herrmann
,
J. W.
, and
Azarm
,
S.
,
2016
, “
Risk-Based Path Planning Optimization Methods for Unmanned Aerial Vehicles Over Inhabited Areas
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
2
), p.
021004
.
20.
Alterovitz
,
R.
,
Siméon
,
T.
, and
Goldberg
,
K.
,
2007
, “
The Stochastic Motion Roadmap: A Sampling Framework for Planning With Markov Motion Uncertainty
,”
Robotics: Science and Systems III
,
Atlanta, GA
,
June 27–30
.
21.
Hu
,
C.
, and
Jin
,
Y.
,
2023
, “
Long-Range Risk-Aware Path Planning for Autonomous Ships in Complex and Dynamic Environments
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041007
.
22.
Melchior
,
N. A.
, and
Simmons
,
R.
,
2007
, “
Particle RRT for Path Planning With Uncertainty
,”
IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, IEEE, pp.
1617
1624
.
23.
Luders
,
B.
,
Kothari
,
M.
, and
How
,
J.
,
2010
, “
Chance Constrained RRT for Probabilistic Robustness to Environmental Uncertainty
,”
AIAA Guidance, Navigation, and Control Conference
,
Toronto, Ontario, Canada
,
Aug. 2–5
.
24.
Greytak
,
M.
, and
Hover
,
F.
,
2009
, “
Motion Planning With an Analytic Risk Cost for Holonomic Vehicles
,”
48th IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference
,
Shanghai, China
,
Dec. 15–18
, IEEE, pp.
5655
5660
.
25.
Guibas
,
L. J.
,
Hsu
,
D.
,
Kurniawati
,
H.
, and
Rehman
,
E.
,
2010
, “Bounded Uncertainty Roadmaps for Path Planning,”
Algorithmic Foundation of Robotics VIII
, Vol.
57
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
199
215
.
26.
Kumbla
,
N. B.
,
Thakar
,
S.
,
Kaipa
,
K. N.
,
Marvel
,
J.
, and
Gupta
,
S. K.
,
2018
, “
Handling Perception Uncertainty in Simulation-Based Singulation Planning for Robotic Bin Picking
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021004
.
27.
Hsu
,
D.
,
Kindel
,
R.
,
Latombe
,
J.-C.
, and
Rock
,
S.
,
2002
, “
Randomized Kinodynamic Motion Planning With Moving Obstacles
,”
Int. J. Rob. Res.
,
21
(
3
), pp.
233
255
.
28.
Jaillet
,
L.
, and
Simeon
,
T.
,
2004
, “
A PRM-Based Motion Planner for Dynamically Changing Environments
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Sendai, Japan
,
Sept. 28–Oct. 2
, Vol. 2, pp.
1606
1611
.
29.
Blackmore
,
L.
,
Li
,
H.
, and
Williams
,
B.
,
2006
, “
A Probabilistic Approach to Optimal Robust Path Planning With Obstacles
,”
American Control Conference (ACC)
,
Minneapolis, MN
,
June 14–16
, IEEE, p. 7.
30.
Blackmore
,
L.
, and
Ono
,
M.
,
2009
, “
Convex Chance Constrained Predictive Control Without Sampling
,”
AIAA Guidance, Navigation, and Control Conference
,
Chicago, IL
,
Aug. 10–13
, p. 5876.
31.
Bertsekas
,
D. P.
, and
Tsitsiklis
,
J. N.
,
1991
, “
An Analysis of Stochastic Shortest Path Problems
,”
Math. Oper. Res.
,
16
(
3
), pp.
580
595
.
32.
Polychronopoulos
,
G. H.
, and
Tsitsiklis
,
J. N.
,
1996
, “
Stochastic Shortest Path Problems With Recourse
,”
Netw.: Int. J.
,
27
(
2
), pp.
133
143
.
33.
Rajendran
,
P.
,
Thakar
,
S.
,
Bhatt
,
P. M.
,
Kabir
,
A. M.
, and
Gupta
,
S. K.
,
2021
, “
Strategies for Speeding Up Manipulator Path Planning to Find High Quality Paths in Cluttered Environments
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
1
), p.
011009
.
34.
Goldberg
,
K.
,
1994
, “
Completeness in Robot Motion Planning
,”
Proceedings of the Workshop on Algorithmic Foundations of Robotics
,
San Francisco, CA
. http://dx.doi.org/ 10.5555/215074.215113
35.
Latombe
,
J.-C.
,
2012
,
Robot Motion Planning
, Vol.
124
,
Springer Science & Business Media
,
New York
.
36.
Hunter
,
J. D.
,
2007
, “
Matplotlib: A 2D Graphics Environment
,”
Comput. Sci. Eng.
,
9
(
3
), pp.
90
95
.
37.
Poudel
,
L.
,
Elagandula
,
S.
,
Zhou
,
W.
, and
Sha
,
Z.
,
2023
, “
Decentralized and Centralized Planning for Multi-robot Additive Manufacturing
,”
ASME J. Mech. Des.
,
145
(
1
), p.
012003
.
38.
Shan
,
T.
, and
Englot
,
B.
,
2017
, “
Belief Roadmap Search: Advances in Optimal and Efficient Planning Under Uncertainty
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE, pp.
5318
5325
.
39.
Agha-Mohammadi
,
A.-A.
,
Chakravorty
,
S.
, and
Amato
,
N. M.
,
2014
, “
Firm: Sampling-Based Feedback Motion-Planning Under Motion Uncertainty and Imperfect Measurements
,”
Int. J. Rob. Res.
,
33
(
2
), pp.
268
304
.
40.
Prentice
,
S.
, and
Roy
,
N.
,
2009
, “
The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance
,”
Int. J. Rob. Res.
,
28
(
11–12
), pp.
1448
1465
.
You do not currently have access to this content.