Abstract

Parametric modeling in computer-aided design (CAD) enables users to easily attain design variations by editing the parameters of geometric constraints. When editing parameters, users may assign improper values to parameters, leading to the generation of invalid models. Regarding this, there is a need for the automatic determination of valid parameter ranges that are free from generating invalid models. This article proposes a novel approach to determining the 1D valid range for a parameter during design variation. It is based on the idea of transforming the problem of determining the range’s endpoints into the problem of detecting the potential violations of the solvability and/or the model validity. Compared with existing methods, the proposed approach is adept at managing both single-parameter and multiparameter editing scenarios, and the output parameter ranges ensure both the solvability and the model validity. Experimental results demonstrate the effectiveness of this approach, although its efficiency remains an area for further improvement.

References

1.
Lin
,
V. C.
,
Gossard
,
D. C.
, and
Light
,
R. A.
,
1981
, “
Variational Geometry in Computer-Aided Design
,”
ACM SIGGRAPH Comput. Graph.
,
15
(
3
), pp.
171
177
.
2.
Bodein
,
Y.
,
Rose
,
B.
, and
Caillaud
,
E.
,
2013
, “
A Roadmap for Parametric CAD Efficiency in the Automotive Industry
,”
Comput.-Aided Des.
,
45
(
10
), pp.
1198
1214
.
3.
Camba
,
J. D.
,
Contero
,
M.
,
Company
,
P.
, and
Hartman
,
N. W.
,
2020
, “
The Cost of Change in Parametric Modeling: A Roadmap
,”
Comput.-Aided Des. Appl.
,
18
(
3
), pp.
634
643
.
4.
Raghothama
,
S.
, and
Shapiro
,
V.
,
2002
, “
Topological Framework for Part Families
,”
ASME. J. Comput. Inf. Sci. Eng.
,
2
(
4
), pp.
246
255
. .
5.
Zou
,
Q.
,
Feng
,
H.-Y.
, and
Gao
,
S.
,
2023
, “
Variational Direct Modeling: A Framework Towards Integration of Parametric Modeling and Direct Modeling in CAD
,”
Comput.-Aided Des.
,
157
, p.
103465
.
6.
Aranburu
,
A.
,
Cotillas
,
J.
,
Justel
,
D.
,
Contero
,
M.
, and
Camba
,
J. D.
,
2022
, “
How Does the Modeling Strategy Influence Design Optimization and the Automatic Generation of Parametric Geometry Variations?
CAD Comput. Aided Des.
,
151
, p.
103364
.
7.
Camba
,
J. D.
,
Contero
,
M.
, and
Company
,
P.
,
2016
, “
Parametric CAD Modeling: An Analysis of Strategies for Design Reusability
,”
Comput.-Aided Des.
,
74
, pp.
18
31
.
8.
Hoffmann
,
C. M.
, and
Kim
,
K. -J.
,
2001
, “
Towards Valid Parametric CAD Models
,”
Comput.-Aided Des.
,
33
(
1
), pp.
81
90
.
9.
Jiang
,
K.
,
Zhu
,
C.
, and
Gao
,
X.
,
2003
, “
Valid Range of Parameters Value in Parametric CAD
,”
J. Comput.-Aided Des. Graph.
,
15
(
8
), pp.
1016
1020
.
10.
Van der Meiden
,
H. A.
, and
Bronsvoort
,
W. F.
,
2010
, “
Tracking Topological Changes in Parametric Models
,”
Comput. Aided Geom. Des.
,
27
(
3
), pp.
281
293
.
11.
Ramnath
,
S.
,
Haghighi
,
P.
,
Kim
,
J.
,
Detwiler
,
D.
,
Berry
,
M.
,
Shah
,
J.
,
Aulig
,
N.
,
Wollstadt
,
P.
, and
Menzel
,
S.
,
2019
, “
Automatically Generating 60,000 CAD Variants for Big Data Applications
,”
39th Computers and Information in Engineering Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
12.
Tang
,
Z.
,
Zou
,
Q.
, and
Gao
,
S.
,
2023
, “
A Decision-Support Method for Multi-parameter Editing of Parametric CAD Models
,”
Adv. Eng. Inform.
,
56
, p.
101997
.
13.
Shah
,
J. J.
, and
Mäntylä
,
M.
,
1995
,
Parametric and Feature-Based CAD/CAM: Concepts, Techniques, and Applications
,
John Wiley & Sons
,
New York
.
14.
Bettig
,
B.
, and
Hoffmann
,
C. M.
,
2011
, “
Geometric Constraint Solving in Parametric Computer-Aided Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021001
.
15.
Light
,
R.
, and
Gossard
,
D.
,
1982
, “
Modification of Geometric Models Through Variational Geometry
,”
Comput.-Aided Des.
,
14
(
4
), pp.
209
214
.
16.
Nelson
,
G.
,
1985
, “
Juno, a Constraint-Based Graphics System
,”
SIGGRAPH Comput. Graph.
,
19
(
3
), pp.
235
243
.
17.
Lamure
,
H.
, and
Michelucci
,
D.
,
1996
, “
Solving Geometric Constraints by Homotopy
,”
IEEE Trans. Vis. Comput. Graph.
,
2
(
1
), pp.
28
34
.
18.
Foufou
,
S.
,
Michelucci
,
D.
, and
Jurzak
,
J.-P.
,
2005
, “
Numerical Decomposition of Geometric Constraints
,”
Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling
,
Cambridge, MA
,
June 13–15
, pp.
143
151
.
19.
Buchanan
,
S. A.
, and
de Pennington
,
A.
,
1993
, “
Constraint Definition System: A Computer-Algebra Based Approach to Solving Geometric-Constraint Problems
,”
Comput.-Aided Des.
,
25
(
12
), pp.
741
750
.
20.
Kondo
,
K.
,
1992
, “
Algebraic Method for Manipulation of Dimensional Relationships in Geometric Models
,”
Comput.-Aided Des.
,
24
(
3
), pp.
141
147
.
21.
Chou
,
S.-C.
,
1988
,
Mechanical Geometry Theorem Proving
, Vol. 41,
Springer Science & Business Media
,
Dordrecht, Holland
.
22.
Dufourd
,
J.-F.
,
Mathis
,
P.
, and
Schreck
,
P.
,
1998
, “
Geometric Construction by Assembling Solved Subfigures
,”
Artif. Intell.
,
99
(
1
), pp.
73
119
.
23.
Joan-Arinyo
,
R.
, and
Soto
,
A.
,
1997
, “
A Correct Rule-Based Geometric Constraint Solver
,”
Comput. Graph.
,
21
(
5
), pp.
599
609
.
24.
Serrano
,
D.
,
1987
, “
Constraint Management in Conceptual Design
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
New York
.
25.
Owen
,
J. C.
,
1991
, “
Algebraic Solution for Geometry From Dimensional Constraints
,”
Proceedings of the 1st ACM Symposium on Solid Modeling Foundations and CAD/CAM Applications
,
Austin, TX
,
June 5–7
, pp.
397
407
.
26.
Bouma
,
W.
,
Fudos
,
I.
,
Hoffmann
,
C.
,
Cai
,
J.
, and
Paige
,
R.
,
1995
, “
Geometric Constraint Solver
,”
Comput.-Aided Des.
,
27
(
6
), pp.
487
501
.
27.
Fudos
,
I.
, and
Hoffmann
,
C. M.
,
1997
, “
A Graph-Constructive Approach to Solving Systems of Geometric Constraints
,”
ACM Trans. Graph.
,
16
(
2
), pp.
179
216
.
28.
Hoffman
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
,
2001
, “
Decomposition Plans for Geometric Constraint Systems, Part I: Performance Measures for CAD
,”
J. Symbolic Comput.
,
31
(
4
), pp.
367
408
.
29.
Hoffman
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
,
2001
, “
Decomposition Plans for Geometric Constraint Problems, Part Ii: New Algorithms
,”
J. Symbolic Comput.
,
31
(
4
), pp.
409
427
.
30.
Jermann
,
C.
,
Trobettoni
,
G.
,
Neveu
,
B.
, and
Mathis
,
P.
,
2006
, “
Decomposition of Geometric Constraint Systems: A Survey
,”
Int. J. Comput. Geom. Appl.
,
16
(
5–6
), pp.
379
414
.
31.
Gao
,
X. S.
,
Qiang
,
L.
, and
Zhang
,
G. F.
,
2006
, “
A C-Tree Decomposition Algorithm for 2d and 3d Geometric Constraint Solving
,”
Comput.-Aided Des.
,
38
(
1
), pp.
1
13
.
32.
van der Meiden
,
H. A.
, and
Bronsvoort
,
W. F.
,
2010
, “
A Non-rigid Cluster Rewriting Approach to Solve Systems of 3d Geometric Constraints
,”
Comput.-Aided Des.
,
42
(
1
), pp.
36
49
.
33.
Hu
,
H.
,
Kleiner
,
M.
,
Pernot
,
J.-P.
,
Zhang
,
C.
,
Huang
,
Y.
,
Zhao
,
Q.
, and
Yeung
,
S.
,
2021
, “
Geometric Over-Constraints Detection: A Survey
,”
Arch. Comput. Methods Eng.
,
28
(
7
), pp.
4331
4355
.
34.
Shapiro
,
V.
, and
Vossler
,
D. L.
,
1995
, “
What Is a Parametric Family of Solids
?”
Proceedings of the 3rd ACM Symposium on Solid Modeling and Applications
,
Salt Lake City, UT
,
May 17–19
, pp.
43
54
.
35.
Raghothama
,
S.
, and
Shapiro
,
V.
,
1998
, “
Boundary Representation Deformation in Parametric Solid Modeling
,”
ACM Trans. Graph.
,
17
(
4
), pp.
259
286
.
36.
Cascaval
,
D.
,
Shalah
,
M.
,
Quinn
,
P.
,
Bodik
,
R.
,
Agrawala
,
M.
, and
Schulz
,
A.
,
2022
, “
Differentiable 3d CAD Programs for Bidirectional Editing
,”
Computer Graphics Forum
,
R.
Chaine
and
M. H.
Kim
, eds., Vol. 41,
Wiley Online Library
,
Reims, France
, pp.
309
323
.
37.
Schulz
,
A.
,
Xu
,
J.
,
Zhu
,
B.
,
Zheng
,
C.
,
Grinspun
,
E.
, and
Matusik
,
W.
,
2017
, “
Interactive Design Space Exploration and Optimization for CAD Models
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
14
.
38.
Gunpinar
,
E.
, and
Gunpinar
,
S.
,
2018
, “
A Shape Sampling Technique Via Particle Tracing for CAD Models
,”
Graph. Models
,
96
, pp.
11
29
.
39.
Hoffmann
,
C. M.
, and
Joan-Arinyo
,
R.
,
2005
, “
A Brief on Constraint Solving
,”
Comput.-Aided Des. Appl.
,
2
(
5
), pp.
655
663
.
40.
Van der Meiden
,
H. A.
, and
Bronsvoort
,
W. F.
,
2005
, “
A Constructive Approach to Calculate Parameter Ranges for Systems of Geometric Constraints
,”
Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling
,
Cambridge, MA
,
June 13–15
, pp.
135
142
.
41.
Tarski
,
A.
,
1998
, “A Decision Method for Elementary Algebra and Geometry,”
Quantifier Elimination and Cylindrical Algebraic Decomposition
,
Springer
,
Santa Monica, CA
, pp.
24
84
.
42.
Sitharam
,
M.
, and
Wang
,
M.
,
2014
, “
How the Beast Really Moves: Cayley Analysis of Mechanism Realization Spaces Using Caymos
,”
Comput.-Aided Des.
,
46
, pp.
205
210
.
43.
Hidalgo
,
M.
, and
Joan-Arinyo
,
R.
,
2012
, “
Computing Parameter Ranges in Constructive Geometric Constraint Solving: Implementation and Correctness Proof
,”
Comput.-Aided Des.
,
44
(
7
), pp.
709
720
.
44.
Hidalgo
,
M.
, and
Joan-Arinyo
,
R.
,
2015
, “
h-Graphs: A New Representation for Tree Decompositions of Graphs
,”
Comput.-Aided Des.
,
67
, pp.
38
47
.
45.
Woo
,
Y.
, and
Lee
,
S. H.
,
2006
, “
Volumetric Modification of Solid CAD Models Independent of Design Features
,”
Adv. Eng. Softw.
,
37
(
12
), pp.
826
835
.
46.
Zou
,
Q.
, and
Feng
,
H.-Y.
,
2019
, “
Push-Pull Direct Modeling of Solid CAD Models
,”
Adv. Eng. Softw.
,
127
, pp.
59
69
.
47.
Zou
,
Q.
, and
Feng
,
H.-Y.
,
2022
, “
A Robust Direct Modeling Method for Quadric B-rep Models Based on Geometry–Topology Inconsistency Tracking
,”
Eng. Comput.
,
38
(
4
), pp.
3815
3830
.
48.
Bidarra
,
R.
, and
Bronsvoort
,
W. F.
,
2000
, “
Semantic Feature Modelling
,”
Comput.-Aided Des.
,
32
(
3
), pp.
201
225
.
49.
Bidarra
,
R.
,
Kraker
,
K. J. D.
, and
Bronsvoort
,
W. F.
,
1998
, “
Representation and Management of Feature Information in a Cellular Model
,”
Comput.-Aided Des.
,
30
(
4
), pp.
301
313
.
50.
Requicha
,
A. G.
,
1980
, “
Representations for Rigid Solids: Theory, Methods, and Systems
,”
ACM Comput. Surv.
,
12
(
4
), pp.
437
464
.
51.
Mäntylä
,
M.
,
1987
,
An Introduction to Solid Modeling
,
Computer Science Press, Inc
,
New York
.
52.
Hoffmann
,
C. M.
,
1989
,
Geometric and Solid Modeling: An Introduction
,
Morgan Kaufmann Publishers Inc
,
San Francisco, CA
.
53.
Sakkalis
,
T.
,
Shen
,
G.
, and
Patrikalakis
,
N. M.
,
2000
, “
Representational Validity of Boundary Representation Models
,”
Comput.-Aided Des.
,
32
(
12
), pp.
719
726
.
54.
Liu
,
Y.
,
Obukhov
,
A.
,
Wegner
,
J. D.
, and
Schindler
,
K.
,
2024
, “
Point2cad: Reverse Engineering CAD Models From 3d Point Clouds
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Seattle, WA
,
June 16–22
, pp.
3763
3772
.
55.
Guo
,
H.
,
Liu
,
S.
,
Pan
,
H.
,
Liu
,
Y.
,
Tong
,
X.
, and
Guo
,
B.
,
2022
, “
Complexgen: CAD Reconstruction by B-rep Chain Complex Generation
,”
ACM Trans. Graph.
,
41
(
4
), pp.
1
18
.
56.
Para
,
W.
,
Bhat
,
S.
,
Guerrero
,
P.
,
Kelly
,
T.
,
Mitra
,
N.
,
Guibas
,
L. J.
, and
Wonka
,
P.
,
2021
, “
Sketchgen: Generating Constrained CAD Sketches
,”
Advances in Neural Information Processing Systems
, Vol. 34,
Virtual Online
,
Dec. 6–14
, pp.
5077
5088
.
57.
SIEMENS
, Synchronous Technology: Changing Your Modeling Approach for Better Designs. Siemens, https://resources.sw.siemens.com/en-US/e-booksynchronous-technology-best-practices/.
58.
Ge
,
J.-X.
,
Chou
,
S.-C.
, and
Gao
,
X.-S.
,
1999
, “
Geometric Constraint Satisfaction Using Optimization Methods
,”
Comput.-Aided Des.
,
31
(
14
), pp.
867
879
.
59.
Hoffmann
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
,
1997
, “
Finding Solvable Subsets of Constraint Graphs
,”
Principles and Practice of Constraint Programming-CP97: Third International Conference, CP97, 1997 Proceedings 3
,
Oct. 29–Nov. 1
,
Springer
, Linz, pp.
463
477
.
You do not currently have access to this content.