Graphical Abstract Figure

Information extraction framework with base IE system (left), paragraph classification tier (middle), and query tier (right). The subcomponents are explained in the framework and case study sections.

Graphical Abstract Figure

Information extraction framework with base IE system (left), paragraph classification tier (middle), and query tier (right). The subcomponents are explained in the framework and case study sections.

Close modal

Abstract

Data-driven research in additive manufacturing (AM) has gained significant success in recent years. This has led to a plethora of scientific literature to emerge. The knowledge in these works consists of AM and artificial intelligence (AI) contexts. It requires substantial effort and time to extract scientific information from these works. AM domain experts have contributed over two dozen review articles to summarize these works. However, information specific to AM and AI contexts still requires manual effort to extract. The recent success of foundation models such as bidirectional encoder representations for transformers or generative pre-trained transformers on text sequences has opened the possibility of expediting scientific information extraction. We propose a framework that enables collaboration between AM and AI experts to continuously extract scientific information from data-driven AM literature. A demonstration tool is implemented based on the proposed framework and a case study is conducted to extract information relevant to the datasets, modeling, sensing, and AM system categories. We show the ability of large language models to expedite the extraction of relevant information from data-driven AM literature. In the future, the framework can be used to extract information from the broader design and manufacturing literature in the engineering discipline.

References

1.
Goh
,
G. D.
,
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2021
, “
A Review on Machine Learning in 3D Printing: Applications, Potential, and Challenges
,”
Artif. Intell. Rev.
,
54
(
1
), pp.
63
94
.
2.
Johnson
,
N. S.
,
Vulimiri
,
P. S.
,
To
,
A. C.
,
Zhang
,
X.
,
Brice
,
C. A.
,
Kappes
,
B. B.
, and
Stebner
,
A. P.
,
2020
, “
Invited Review: Machine Learning for Materials Developments in Metals Additive Manufacturing
,”
Addit. Manuf.
,
36
, p.
101641
.
3.
Xames
,
M. D.
,
Torsha
,
F. K.
, and
Sarwar
,
F.
,
2022
, “
A Systematic Literature Review on Recent Trends of Machine Learning Applications in Additive Manufacturing
,”
J. Intell. Manuf.
,
34
(
6
), pp.
1
27
.
4.
Dee
,
C. R.
,
2007
, “
The Development of the Medical Literature Analysis and Retrieval System (MEDLARS)
,”
J. Med. Libr. Assoc.
,
95
(
4
), pp.
416
425
.
5.
Landhuis
,
E.
,
2016
, “
Scientific Literature: Information Overload
,”
Nature
,
535
(
7612
), pp.
457
458
.
6.
Borkowski
,
C.
, and
Sperling Martin
,
J.
,
1975
, “
Structure, Effectiveness and Benefits of LEXtractor, an Operational Computer Program for Automatic Extraction of Case Summaries and Dispositions From Court Decisions
,”
J. Am. Soc. Inf. Sci.
,
26
(
2
), pp.
94
102
.
7.
Hong
,
Z.
,
Ward
,
L.
,
Chard
,
K.
,
Blaiszik
,
B.
, and
Foster
,
I.
,
2021
, “
Challenges and Advances in Information Extraction From Scientific Literature: A Review
,”
JOM
,
73
(
11
), pp.
3383
3400
.
8.
Wei
,
X.
,
Cui
,
X.
,
Cheng
,
N.
,
Wang
,
X.
,
Zhang
,
X.
,
Huang
,
S.
,
Xie
,
P.
, et al
,
2023
, “
Zero-Shot Information Extraction Via Chatting With Chatgpt
,” arXiv preprint arXiv: 2302.10205.
9.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
,
2017
, “
Attention is All You Need
,” Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, Curran Associates Inc., pp.
6000
6010
.
10.
Qin
,
J.
,
Hu
,
F.
,
Liu
,
Y.
,
Witherell
,
P.
,
Wang
,
C. C. L.
,
Rosen
,
D. W.
,
Simpson
,
T. W.
,
Lu
,
Y.
, and
Tang
,
Q.
,
2022
, “
Research and Application of Machine Learning for Additive Manufacturing
,”
Addit. Manuf.
,
52
, p.
102691
.
11.
Safdar
,
M.
,
Lamouche
,
G.
,
Paul
,
P. P.
,
Wood
,
G.
, and
Zhao
,
Y. F.
,
2023
,
Engineering of Additive Manufacturing Features for Data-Driven Solutions: Sources, Techniques, Pipelines, and Applications
,
Springer Nature
,
Cham, Switzerland
.
12.
Zhai
,
X.
,
Jin
,
L.
, and
Jiang
,
J.
,
2022
, “
A Survey of Additive Manufacturing Reviews
,”
Mater. Sci. Addit. Manuf.
,
1
(
4
), p.
21
.
13.
Hagedorn
,
T. J.
,
Krishnamurty
,
S.
, and
Grosse
,
I. R.
,
2018
, “
A Knowledge-Based Method for Innovative Design for Additive Manufacturing Supported by Modular Ontologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021009
.
14.
Dinar
,
M.
, and
Rosen
,
D. W.
,
2017
, “
A Design for Additive Manufacturing Ontology
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021013
.
15.
Liang
,
J. S.
,
2018
, “
An Ontology-Oriented Knowledge Methodology for Process Planning in Additive Layer Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
53
, pp.
28
44
.
16.
Ko
,
H.
,
Witherell
,
P.
,
Ndiaye
,
N. Y.
, and
Lu
,
Y.
,
2019
, “
Machine Learning Based Continuous Knowledge Engineering for Additive Manufacturing
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, BC, Canada
,
Aug. 22–26
,
IEEE
, pp.
648
654
.
17.
Sun
,
S.
,
Velivela
,
P. T.
,
Zeng
,
Y.
, and
Zhao
,
Y. F.
,
2022
, “
Knowledge Extraction Method to Support Domain Integrated Design Methodology
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
86212
,
American Society of Mechanical Engineers
, p.
V002T02A008
.
18.
La Quatra
,
M.
, and
Cagliero
,
L.
,
2022
, “
Transformer-Based Highlights Extraction From Scientific Papers
,”
Knowl.-Based Syst.
,
252
, pp.
109382
.
19.
Beltagy
,
I.
,
Lo
,
K.
, and
Cohan
,
A.
,
2019
, “
SciBERT: A Pretrained Language Model for Scientific Text
,” arXiv preprint arXiv:1903.10676.
20.
Schilling-Wilhelmi
,
M.
,
Ríos-García
,
M.
,
Shabih
,
S.
,
Gil
,
M. V.
,
Miret
,
S.
,
Koch
,
C. T.
,
Márquez
,
J. A.
, and
Jablonka
,
K. M.
,
2024
, “
From Text to Insight: Large Language Models for Materials Science Data Extraction
,” arXiv preprint arXiv:2407.16867.
21.
Lo
,
K.
,
Wang
,
L. L.
,
Neumann
,
M.
,
Kinney
,
R.
, and
Weld
,
D. S.
,
2019
, “
S2ORC: The Semantic Scholar Open Research Corpus
,” arXiv preprint arXiv:1911.02782.
22.
Cowie
,
J.
, and
Lehnert
,
W.
,
1996
, “
Information Extraction
,”
Commun. ACM
,
39
(
1
), pp.
80
91
.
23.
Xian
,
J.
,
Teofili
,
T.
,
Pradeep
,
R.
, and
Lin
,
J.
,
2024
, “
Vector Search With OpenAI Embeddings: Lucene Is All You Need
,”
Proceedings of the 17th ACM International Conference on Web Search and Data Mining
,
Merida, Mexico
,
Mar. 4–8
, pp.
1090
1093
.
24.
Dunn
,
A.
,
Dagdelen
,
J.
,
Walker
,
N.
,
Lee
,
S.
,
Rosen
,
A. S.
,
Ceder
,
G.
,
Persson
,
K.
, and
Jain
,
A.
,
2022
, “
Structured Information Extraction From Complex Scientific Text With Fine-Tuned Large Language Models
,” arXiv preprint arXiv:2212.05238.
25.
Gregory
,
K.
, and
Koesten
,
L.
,
2023
,
Human-Centered Data Discovery
,
Springer Nature
,
Cham, Switzerland
.
26.
Egan
,
K.
,
Kubala
,
F.
, and
Sears
,
A.
,
2008
, “
User-Centered MT Development and Implementation
,”
Proceedings of the 8th Conference of the Association for Machine Translation in the Americas: Government and Commercial Uses of MT
,
Waikiki, HI
,
Oct. 21–25
, pp.
354
363
.
27.
Kotnis
,
B.
,
Gashteovski
,
K.
,
Gastinger
,
J.
,
Serra
,
G.
,
Alesiani
,
F.
,
Sztyler
,
T.
,
Shaker
,
A.
,
Gong
,
N.
,
Lawrence
,
C.
, and
Xu
,
Z.
,
2022
, “
Human-Centric Research for NLP: Towards a Definition and Guiding Questions
,” arXiv preprint arXiv:2207.04447.
28.
Schleith
,
J.
,
Hoffmann
,
H.
,
Norkute
,
M.
, and
Cechmanek
,
B.
,
2022
, “Human in the Loop Information Extraction Increases Efficiency and Trust.”
29.
Oehlmann
,
P.
,
Osswald
,
P.
,
Blanco
,
J. C.
,
Friedrich
,
M.
,
Rietzel
,
D.
, and
Witt
,
G.
,
2021
, “
Modeling Fused Filament Fabrication using Artificial Neural Networks
,”
Prod. Eng.
,
15
(
3
), pp.
467
478
.
30.
Cheng
,
R.
,
Smith-Renner
,
A.
,
Zhang
,
K.
,
Tetreault
,
J. R.
, and
Jaimes
,
A.
,
2022
, “
Mapping the Design Space of Human-AI Interaction in Text Summarization
,” arXiv preprint arXiv:2206.14863.
31.
Sambasivan
,
N.
,
Kapania
,
S.
,
Highfill
,
H.
,
Akrong
,
D.
,
Paritosh
,
P.
, and
Aroyo
,
L. M.
,
2021
, “
“Everyone Wants to Do the Model Work, Not the Data Work”: Data Cascades in High-Stakes AI
,”
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
,
Yokohama, Japan
,
May 8–13
, pp.
1
15
.
32.
Lewis
,
P.
,
Perez
,
E.
,
Piktus
,
A.
,
Petroni
,
F.
,
Karpukhin
,
V.
,
Goyal
,
N.
,
Küttler
,
H.
, et al
,
2020
, “
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
9459
9474
.
33.
Gentile
,
A. L.
,
2019
, “
Information Extraction With Humans in the Loop
,”
Companion Proceedings of the 2019 World Wide Web Conference
,
San Francisco, CA
,
May 13–17
, pp.
1264
1264
.
34.
Caselli
,
T.
,
Cibin
,
R.
,
Conforti
,
C.
,
Encinas
,
E.
, and
Teli
,
M.
,
2021
, “
Guiding Principles for Participatory Design-Inspired Natural Language Processing
,”
Proceedings of the 1st Workshop on NLP for Positive Impact
,
Bangkok, Thailand (online)
,
Aug. 5
,
Association for Computational Linguistics (ACL)
, pp.
27
35
.
35.
Birhane
,
A.
,
Isaac
,
W.
,
Prabhakaran
,
V.
,
Diaz
,
M.
,
Elish
,
M. C.
,
Gabriel
,
I.
, and
Mohamed
,
S.
,
2022
, “
Power to the People? Opportunities and Challenges for Participatory AI
,”
Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization
,
Arlington, VA
,
Oct. 6–9
, pp.
1
8
.
36.
Ye
,
D.
,
Fuh
,
J. Y. H.
,
Zhang
,
Y.
,
Hong
,
G. S.
, and
Zhu
,
K.
,
2018
, “
In Situ Monitoring of Selective Laser Melting Using Plume and Spatter Signatures by Deep Belief Networks
,”
ISA Trans.
,
81
, pp.
96
104
.
37.
Safdar
,
M.
,
Xie
,
J.
,
Ko
,
H.
,
Lu
,
Y.
,
Lamouche
,
G.
, and
Zhao
,
Y. F.
,
2024
, “
Transferability Analysis of Data-Driven Additive Manufacturing Knowledge: A Case Study Between Powder Bed Fusion and Directed Energy Deposition
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
5
), p.
051010
.
38.
Safdar
,
M.
,
Xie
,
J.
,
Ko
,
H.
,
Lu
,
Y.
,
Lamouche
,
G.
, and
Zhao
,
Y. F.
,
2023
, “
Transferability Analysis of Data-Driven Additive Manufacturing Knowledge: A Case Study Between Powder Bed Fusion and Directed Energy Deposition
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
87295
,
American Society of Mechanical Engineers
, p.
V002T02A078
.
39.
Xie
,
J.
,
Safdar
,
M.
,
Romascanu
,
A. M.
,
Lu
,
Y.
,
Ko
,
H.
,
Yang
,
Z.
, and
Zhao
,
Y. F.
,
2024
, “
Towards Reproducible Machine Learning-Based Process Monitoring and Quality Prediction Research for Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
88346
,
American Society of Mechanical Engineers
, p.
V02AT02A033
.
40.
Zhang
,
Y.
,
Safdar
,
M.
,
Xie
,
J.
,
Li
,
J.
,
Sage
,
M.
, and
Zhao
,
Y. F.
,
2022
, “
A Systematic Review on Data of Additive Manufacturing for Machine Learning Applications: The Data Quality, Type, Preprocessing, and Management
,”
J. Intell. Manuf.
,
34
(
8
), pp.
1
36
.
41.
Safdar
,
M.
,
Lamouche
,
G.
,
Paul
,
P. P.
,
Wood
,
G.
, and
Zhao
,
Y. F.
,
2023
, “Feature Engineering in Additive Manufacturing,”
Engineering of Additive Manufacturing Features for Data-Driven Solutions: Sources, Techniques, Pipelines, and Applications
,
Springer
,
New York
, pp.
17
43
.
You do not currently have access to this content.