Abstract

Laser powder bed fusion (LPBF) is a key technique in metal additive manufacturing (AM) that enables the fabrication of parts with complex geometries and enhanced mechanical properties. Despite its advantages, LPBF's susceptibility to defects remains a challenge, directly linked to melt pool instability. Real-time melt pool monitoring (MPM) systems offer immediate feedback on melt pool states, which is crucial for identifying potential defects during the LPBF process. Recently, machine learning (ML)-based approaches with these monitoring systems have been introduced for real-time process anomaly detection and classification. However, one major hurdle is the requirement for large volumes of labeled and balanced data for ML model development, which is necessary for accurate process outlier identification and categorization. To address the issues, this article introduces a self-supervised learning-based visual transformer (SiT) for multilabel classification of melt pool anomalies, such as abnormal sizes, irregular shapes, spatters, and plumes. Experiments reveal that the self-supervised approach, with an average F1 score of 0.979, surpasses the performance of the supervised approach, which has an average F1 score of 0.836 across all classification cases, particularly in imbalanced datasets. The SiT model efficiently classifies multiple anomalies simultaneously, without extensive manual labeling, addressing data imbalance and enhancing MPM systems' efficiency and reliability. This advancement marks a significant contribution to improving part quality in LPBF processes.

References

1.
Singh
,
D. D.
,
Mahender
,
T.
, and
Reddy
,
A. R.
,
2021
, “
Powder Bed Fusion Process: A Brief Review
,”
Mater. Today: Proc.
,
46
, pp.
350
355
.
2.
Yang
,
Z.
,
Kim
,
J.
,
Lu
,
Y.
,
Jones
,
A.
,
Witherell
,
P.
,
Yeung
,
H.
, and
Ko
,
H.
,
2024
, “
Enhancing Part Quality Management Using a Holistic Data Fusion Framework in Metal Powder Bed Fusion Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
5
), p.
051007
.
3.
Zhang
,
Y.
,
Hong
,
G. S.
,
Ye
,
D.
,
Zhu
,
K.
, and
Fuh
,
J. Y.
,
2018
, “
Extraction and Evaluation of Melt Pool, Plume and Spatter Information for Powder-Bed Fusion AM Process Monitoring
,”
Mater. Des.
,
156
, pp.
458
469
.
4.
Wang
,
R.
,
Garcia
,
D.
,
Kamath
,
R. R.
,
Dou
,
C.
,
Ma
,
X.
,
Shen
,
B.
, and
Kong
,
Z.
,
2022
, “
In Situ Melt Pool Measurements for Laser Powder Bed Fusion Using Multi-Sensing and Correlation Analysis
,”
Sci. Rep.
,
12
(
1
), p.
13716
.
5.
Lu
,
Y.
,
Yang
,
Z.
,
Kim
,
J.
,
Cho
,
H.
, and
Yeung
,
H.
,
2020
, “
Camera-Based Coaxial Melt Pool Monitoring Data Registration for Laser Powder Bed Fusion Additive Manufacturing
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Virtual
,
Nov. 16–19
.
6.
Kim
,
J.
,
Yang
,
Z.
,
Ko
,
H.
,
Cho
,
H.
, and
Lu
,
Y.
,
2023
, “
Deep Learning-Based Data Registration of Melt-Pool-Monitoring Images for Laser Powder Bed Fusion Additive Manufacturing
,”
J. Manuf. Syst.
,
68
, pp.
117
129
.
7.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2019
, “
Investigation of Deep Learning for Real-Time Melt Pool Classification in Additive Manufacturing
,”
Proceedings of the IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, BC, Canada
,
Aug. 22–26
, IEEE, pp.
1169
1174
.
8.
Wang
,
J.
,
Zhu
,
R.
,
Liu
,
Y.
, and
Zhang
,
L.
,
2023
, “
Understanding Melt Pool Characteristics in Laser Powder Bed Fusion: An Overview of Single- and Multi-track Melt Pools for Process Optimization
,”
Adv. Powder Mater.
,
2
(
4
), p.
100137
.
9.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
10.
Larsen
,
S.
, and
Hooper
,
P. A.
,
2022
, “
Deep Semi-supervised Learning of Dynamics for Anomaly Detection in Laser Powder Bed Fusion
,”
J. Intell. Manuf.
,
33
(
2
), pp.
457
471
.
11.
Scime
,
L.
, and
Beuth
,
J.
,
2018
, “
Anomaly Detection and Classification in a Laser Powder Bed Additive Manufacturing Process Using a Trained Computer Vision Algorithm
,”
Addit. Manuf.
,
19
, pp.
114
126
.
12.
Harbig
,
J.
,
Wenzler
,
D. L.
,
Baehr
,
S.
,
Kick
,
M. K.
,
Merschroth
,
H.
,
Wimmer
,
A.
,
Weigold
,
M.
, and
Zaeh
,
M. F.
,
2022
, “
Methodology to Determine Melt Pool Anomalies in Powder Bed Fusion of Metals Using a Laser Beam by Means of Process Monitoring and Sensor Data Fusion
,”
Materials
,
15
(
3
), p.
1265
.
13.
Grasso
,
M.
, and
Colosimo
,
B. M.
,
2019
, “
A Statistical Learning Method for Image-Based Monitoring of the Plume Signature in Laser Powder Bed Fusion
,”
Rob. Comput. Integr. Manuf.
,
57
, pp.
103
115
.
14.
Sato
,
M. M.
,
Wong
,
V. W. H.
,
Law
,
K. H.
,
Yeung
,
H.
,
Yang
,
Z.
,
Lane
,
B.
, and
Witherell
,
P.
,
2022
, “
Anomaly Detection of Laser Powder Bed Fusion Melt Pool Images Using Combined Unsupervised and Supervised Learning Methods
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2022
,
St. Louis, MO
,
Aug. 14 –17
.
15.
Fathizadan
,
S.
,
Ju
,
F.
, and
Lu
,
Y.
,
2021
, “
Deep Representation Learning for Process Variation Management in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
42
, p.
101961
.
16.
Ko
,
H.
,
Kim
,
J.
,
Lu
,
Y.
,
Shin
,
D.
,
Yang
,
Z.
, and
Oh
,
Y.
,
2022
, “
Spatial-Temporal Modeling Using Deep Learning for Real-Time Monitoring of Additive Manufacturing
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2022
,
St. Louis, MO
,
Aug. 14 –17
.
17.
Dosovitskiy
,
A.
,
Beyer
,
L.
,
Kolesnikov
,
A.
,
Weissenborn
,
D.
,
Zhai
,
X.
,
Unterthiner
,
T.
, and
Houlsby
,
N.
,
2020
, “
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
,”
Proceedings of 9th International Conference on Learning Representations
,
Austria
,
May 3–7
.
18.
Yang
,
Y.
, and
Xu
,
Z.
,
2020
, “
Rethinking the Value of Labels for Improving Class-Imbalanced Learning
,”
Proceedings of the 34th International Conference on Neural Information Processing Systems
,
Vancouver, BC, Canada
,
Dec. 6–12
.
19.
Caron
,
M.
,
Touvron
,
H.
,
Misra
,
I.
, et al
,
2021
, “
Emerging Properties in Self-supervised Vision Transformers
,”
Proceedings of the IEEE/CVF International Conference on Computer Vvision
,
Montreal, BC, Canada
,
Oct. 10–17
.
20.
Chen
,
T.
,
Kornblith
,
S.
,
Norouzi
,
M.
, and
Hinton
,
G.
,
2020
, “
A Simple Framework for Contrastive Learning of Visual Representations
,”
Proceedings of the International Conference on Machine Learning 2022
,
Baltimore, MD
,
July 17–23
, PMLR, pp.
1597
1607
.
21.
Oord
,
A. V. D.
,
Li
,
Y.
, and
Vinyals
,
O.
,
2018
, “Representation Learning With Contrastive Predictive Coding,” preprint arXiv:1807.03748.
22.
Gidaris
,
S.
,
Singh
,
P.
, and
Komodakis
,
N.
,
2018
, “
Unsupervised Representation Learning by Predicting Image Rotations
,”
Proceedings of the International Conference on Learning Representations
,
Vancouver, BC, Canada
,
Apr. 30– May 3
.
23.
He
,
K.
,
Chen
,
X.
,
Xie
,
S.
,
Li
,
Y.
,
Dollár
,
P.
, and
Girshick
,
R.
,
2022
, “
Masked Autoencoders are Scalable Vision Learners
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2022
,
New Orleans, LA
,
June 21–24
.
24.
Yeung
,
H.
,
Lane
,
B. M.
,
Donmez
,
M. A.
,
Fox
,
J. C.
, and
Neira
,
J.
,
2018
, “
Implementation of Advanced Laser Control Strategies for Powder Bed Fusion Systems.
Procedia Manuf.
,
26
, pp.
871
879
.
25.
Lane
,
B.
,
Mekhontsev
,
S.
,
Grantham
,
S.
,
Vlasea
,
M. L.
,
Whiting
,
J.
,
Yeung
,
H.
, and
Rice
,
J.
,
2016
, “
Design, Developments, and Results From the NIST Additive Manufacturing Metrology Testbed (AMMT)
,”
Proceedings of the 2016 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
.
26.
Yeung
,
H.
,
Yang
,
Z.
, and
Yan
,
L.
,
2020
, “
A Meltpool Prediction Based Scan Strategy for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
35
, p.
101383
.
27.
Lane
,
B.
, and
Yeung
,
H.
,
2019
, “
Process Monitoring Dataset From the Additive Manufacturing Metrology Testbed (AMMT): “Three-Dimensional Scan Strategies
,”
J. Res. Natl. Inst. Stand. Technol.
,
124
, p.
1
.
28.
Li
,
Q.
, and
Griffiths
,
J. G.
,
2004
, “
Least Squares Ellipsoid Specific Fitting
,”
Proceedings of the Geometric Modeling and Processing
,
Beijing, China
,
Apr. 13–15
, IEEE, pp.
335
340
.
29.
Liu
,
Z.
,
Lin
,
Y.
,
Cao
,
Y.
,
Hu
,
H.
,
Wei
,
Y.
,
Zhang
,
Z.
, and
Guo
,
B.
,
2021
, “
Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Virtual
,
March 10
, pp.
10012
10022
.
30.
Standley
,
T.
,
Zamir
,
A. R.
,
Chen
,
D.
,
Guibas
,
L. J.
,
Malik
,
J.
, and
Savarese
,
S.
,
2020
, “
Which Tasks Should Be Learned Together in Multi-task Learning?
Proceedings of the International Conference on Machine Learning
,
Virtual
,
March 23
, pp.
9120
9132
.
31.
Kendall
,
A.
,
Gal
,
Y.
, and
Cipolla
,
R.
,
2018
, “
Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
7482
7491
.
You do not currently have access to this content.