Abstract

We introduce a novel digital twin (DT) framework for the predictive maintenance of long-term physical systems. Using monitoring tire health as an application, we show how the DT framework can be used to enhance automotive safety and efficiency, and how the technical challenges can be overcome using a three-step approach. First, to manage the data complexity over a long operation span, we employ data reduction techniques to concisely represent physical tires using historical performance and usage data. Relying on these data, for fast real-time prediction, we train a transformer-based model offline on our concise dataset to predict future tire health over time, represented as remaining casing potential (RCP). Based on our architecture, our model quantifies both epistemic and aleatoric uncertainties, providing reliable confidence intervals around predicted RCP. Second, to incorporate real-time data, we update the predictive model in the DT framework, ensuring its accuracy throughout its lifespan with the aid of hybrid modeling and the use of the discrepancy function. Third, to assist decision-making in predictive maintenance, we implement a tire state decision algorithm, which strategically determines the optimal timing for tire replacement based on RCP forecasted by our transformer model. This approach ensures that our DT accurately predicts system health, continually refines its digital representation, and supports predictive maintenance decisions. Our framework effectively embodies a physical system, leveraging big data and machine learning (ML) for predictive maintenance, model updates, and decision-making.

References

1.
Weissman
,
S.
,
Sackman
,
J.
,
Gillen
,
D.
, and
Monismith
,
C.
, “Extending the Lifespan of Tires: Final Report.”
2.
Zheng
,
L.
,
Meyendorf
,
N.
, and
Mrad
,
N.
2018
, “
The Role of Data Fusion in Predictive Maintenance Using Digital Twin
,”
AIP Conference Proceedings
, vol. 1949, No. 1,
AIP Publishing
. https://pubs.aip.org/aip/acp/article/1949/1/020023/819472/The-role-of-data-fusion-in-predictive-maintenance, Accessed March 4, 2024.
3.
Fuller
,
A.
,
Fan
,
Z.
,
Day
,
C.
, and
Barlow
,
C.
,
2020
, “
Digital Twin: Enabling Technologies, Challenges and Open Research
,”
IEEE Access
,
8
, pp.
108952
108971
.
4.
Hummen
,
T.
,
Hellweg
,
S.
, and
Roshandel
,
R.
,
2023
, “
Optimizing Lifespan of Circular Products: A Generic Dynamic Programming Approach for Energy-Using Products
,”
Energies
,
16
(
18
), p.
6711
.
5.
Nouri Qarahasanlou
,
A.
,
Ataei
,
M.
,
Khalokakaie
,
R.
,
Ghodrati
,
B.
, and
Jafarei
,
R.
,
2016
, “
Tire Demand Planning Based on Reliability and Operating Environment
,”
Int. J. Min. Geo-Eng.
,
50
(
2
), pp.
239
248
.
6.
Jha
,
D.
,
Karkaria
,
V. N.
,
Karandikar
,
P. B.
, and
Desai
,
R. S.
,
2022
, “
Statistical Modeling of Hybrid Supercapacitor
,”
J. Energy Storage
,
46
, p.
103869
.
7.
Symeonides
,
D.
,
Loizia
,
P.
, and
Zorpas
,
A. A.
,
2019
, “
Tire Waste Management System in Cyprus in the Framework of Circular Economy Strategy
,”
Environ. Sci. Pollut. Res.
,
26
(
35
), pp.
35445
35460
.
8.
Gehrke
,
I.
,
Schläfle
,
S.
,
Bertling
,
R.
,
Öz
,
M.
, and
Gregory
,
K.
,
2023
, “
Review: Mitigation Measures to Reduce Tire and Road Wear Particles
,”
Sci. Total Environ.
,
904
, p.
166537
.
9.
Karkaria
,
V.
,
Chen
,
J.
,
Siuta
,
C.
,
Lim
,
D.
,
Radelescu
,
R.
, and
Chen
,
W.
,
2024
, “Tire Life Assessment for Increasing Re-Manufacturing of Commercial Vehicle Tires,”
Technology Innovation for the Circular Economy
,
John Wiley & Sons, Ltd
, pp.
599
612
.
10.
Karkaria
,
V.
,
Chen
,
J.
,
Siuta
,
C.
,
Lim
,
D.
,
Radulescu
,
R.
, and
Chen
,
W.
,
2024
, “
A Machine Learning–Based Tire Life Prediction Framework for Increasing Life of Commercial Vehicle Tires
,”
ASME J. Mech. Des.
,
146
(
2
), p.
020902
.
11.
Rahimdel
,
M. J.
,
2023
, “
Residual Lifetime Estimation for the Mining Truck Tires
,”
Proc. Inst. Mech. Eng. Part J. Automob. Eng.
,
237
(
13
), pp.
3232
3244
.
12.
Read “Tires and Passenger Vehicle Fuel Economy: Informing Consumers, Improving Performance—Special Report 286” at NAP.Edu. .
13.
Kong
,
T.
,
Hu
,
T.
,
Zhou
,
T.
, and
Ye
,
Y.
,
2021
, “
Data Construction Method for the Applications of Workshop Digital Twin System
,”
J. Manuf. Syst.
,
58
, pp.
323
328
.
14.
Hussain
,
S.
,
Mahmud
,
U.
, and
Yang
,
S.
,
2021
, “
Car E-Talk: An IoT-Enabled Cloud-Assisted Smart Fleet Maintenance System
,”
IEEE Internet Things J.
,
8
(
12
), pp.
9484
9494
.
15.
Kapteyn
,
M. G.
,
Knezevic
,
D. J.
, and
Willcox
,
K.
,
2020
, “
Toward Predictive Digital Twins via Component-Based Reduced-Order Models and Interpretable Machine Learning
,”
AIAA Scitech 2020 Forum
, p.
0418
.
16.
Bosso
,
N.
,
Magelli
,
M.
,
Trinchero
,
R.
, and
Zampieri
,
N.
,
2024
, “
Application of Machine Learning Techniques to Build Digital Twins for Long Train Dynamics Simulations
,”
Veh. Syst. Dyn.
,
62
(
1
), pp.
21
40
.
17.
David
,
I.
,
Galasso
,
J.
, and
Syriani
,
E.
,
2021
, “
Inference of Simulation Models in Digital Twins by Reinforcement Learning
,”
2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)
,
Fukuoka, Japan
, IEEE, pp.
221
224
.
18.
Xiao
,
L.
,
Zhan
,
Q.
,
Sun
,
B.
,
Feng
,
H.
,
Zeng
,
Y.
,
Wang
,
H.
, and
Yin
,
W. Y.
,
2022
, “
Scientific Machine Learning Enables Multiphysics Digital Twins of Large-Scale Electronic Chips
,”
IEEE Trans. Micro. Theory Techn.
,
70
(
12
), pp.
5305
5318
.
19.
Tripura
,
T.
,
Desai
,
A. S.
,
Adhikari
,
S.
, and
Chakraborty
,
S.
,
2023
, “
Probabilistic Machine Learning Based Predictive and Interpretable Digital Twin for Dynamical Systems
,”
Comput. Struct.
,
281
, p.
107008
.
20.
van Beek
,
A.
,
Nevile Karkaria
,
V.
, and
Chen
,
W.
,
2023
, “
Digital Twins for the Designs of Systems: A Perspective
,”
Struct. Multidiscip. Optim.
,
66
(
3
), p.
49
.
21.
Löcklin
,
A.
,
Müller
,
M.
,
Jung
,
T.
,
Jazdi
,
N.
,
White
,
D.
, and
Weyrich
,
M.
,
2020
, “
Digital Twin for Verification and Validation of Industrial Automation Systems—A Survey
,”
2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
,
Vienna, Austria
, vol. 1, pp.
851
858
.
22.
Liu
,
M.
,
Fang
,
S.
,
Dong
,
H.
, and
Xu
,
C.
,
2021
, “
Review of Digital Twin About Concepts, Technologies, and Industrial Applications
,”
J. Manuf. Syst.
,
58
, pp.
346
361
.
23.
Mao
,
H.
,
Liu
,
Z.
,
Qiu
,
C.
,
Huang
,
Y.
, and
Tan
,
J.
,
2023
, “
Prescriptive Maintenance for Complex Products With Digital Twin Considering Production Planning and Resource Constraints
,”
Meas. Sci. Technol.
,
34
(
12
), p.
125903
.
24.
Li
,
Z.
,
Wallace
,
E.
,
Shen
,
S.
,
Lin
,
K.
,
Keutzer
,
K.
,
Klein
,
D.
, and
Gonzalez
,
J.
,
2020
, “
Train Big, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers
,”
Proceedings of the 37th International Conference on Machine Learning
,
Virtual
, PMLR, pp.
5958
5968
.
25.
Hu
,
J.
, and
Chen
,
P.
,
2020
, “
Predictive Maintenance of Systems Subject to Hard Failure Based on Proportional Hazards Model
,”
Reliab. Eng. Syst. Saf.
,
196
, p.
106707
.
26.
Zhu
,
J.
,
Han
,
K.
, and
Wang
,
S.
,
2021
, “
Automobile Tire Life Prediction Based on Image Processing and Machine Learning Technology
,”
Adv. Mech. Eng.
,
13
(
3
), p.
16878140211002727
.
27.
Lim
,
B.
,
Arık
,
,
Loeff
,
N.
, and
Pfister
,
T.
,
2021
, “
Temporal Fusion Transformers for Interpretable Multi-Horizon Time Series Forecasting
,”
Int. J. Forecast.
,
37
(
4
), pp.
1748
1764
.
28.
Moges
,
T.
,
Yang
,
Z.
,
Jones
,
K.
,
Feng
,
S.
,
Witherell
,
P.
, and
Lu
,
Y.
,
2021
, “
Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(5), p.
050902
.
29.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
.
30.
Hickey
,
J.
, and
Langley
,
R.
,
2022
, “
Alternative Metrics for Design Decisions Based on Separating Aleatory and Epistemic Probabilistic Uncertainties
,”
Mech. Syst. Signal Process.
,
181
, p.
109532
.
31.
Gal
,
Y.
, and
Ghahramani
,
Z.
,
2016
, “
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
,”
Proceedings of the 33rd International Conference on Machine Learning
,
New York City
, pp.
1050
1059
.
32.
Zhang
,
W.
,
Quan
,
H.
, and
Srinivasan
,
D.
,
2019
, “
An Improved Quantile Regression Neural Network for Probabilistic Load Forecasting
,”
IEEE Trans. Smart Grid
,
10
(
4
), pp.
4425
4434
.
33.
Chua Chow
,
C.
, and
Sarin
,
R. K.
Known,
2002
, “
Known, Unknown, and Unknowable Uncertainties
,”
Theory Decis.
,
52
, pp.
127
138
34.
Zhou
,
L.
,
Pan
,
S.
,
Wang
,
J.
, and
Vasilakos
,
A. V.
,
2017
, “
Machine Learning on Big Data: Opportunities and Challenges
,”
Neurocomputing
,
237
, pp.
350
361
.
35.
Chen
,
D.
,
Hu
,
Q.
, and
Yang
,
Y.
,
2011
, “
Parameterized Attribute Reduction with Gaussian Kernel Based Fuzzy Rough Sets
,”
Inf. Sci.
,
181
(
23
), pp.
5169
5179
.
36.
Kasun
,
L. L. C.
,
Yang
,
Y.
,
Huang
,
G. B.
, and
Zhang
,
Z.
,
2016
, “
Dimension Reduction With Extreme Learning Machine
,”
IEEE Trans. Image Proc.
,
25
(
8
), pp.
3906
3918
.
37.
Xu
,
D.
,
Wang
,
P.
,
Jiang
,
Y.
,
Fan
,
Z.
, and
Wang
,
Z.
,
2022
, “
Signal Processing for Implicit Neural Representations
,”
Adv. Neural Inf. Process. Syst.
,
35
, pp.
13404
13418
.
38.
Zhang
,
Y.
,
Wang
,
Y.
,
Jiang
,
Z.
,
Zheng
,
L.
,
Chen
,
J.
, and
Lu
,
J.
,
2023
, “
Domain Adaptation via Transferable Swin Transformer for Tire Defect Detection
,”
Eng. Appl. Artif. Intell.
,
122
, p.
106109
.
39.
Zhang
,
H.
,
Zou
,
Y.
,
Yang
,
X.
, and
Yang
,
H.
,
2022
, “
A Temporal Fusion Transformer for Short-Term Freeway Traffic Speed Multistep Prediction
,”
Neurocomputing
,
500
, pp.
329
340
.
40.
Xu
,
Q.
,
Deng
,
K.
,
Jiang
,
C.
,
Sun
,
F.
, and
Huang
,
X.
,
2017
, “
Composite Quantile Regression Neural Network With Applications
,”
Expert Syst. Appl.
,
76
, pp.
129
139
.
41.
Sadr
,
M. A. M.
,
Gante
,
J.
,
Champagne
,
B.
,
Falcao
,
G.
, and
Sousa
,
L.
,
2022
, “
Uncertainty Estimation via Monte Carlo Dropout in CNN-Based MmWave MIMO Localization
,”
IEEE Signal Process. Lett.
,
29
, pp.
269
273
.
42.
Althoff
,
D.
,
Rodrigues
,
L. N.
, and
Bazame
,
H. C.
,
2021
, “
Uncertainty Quantification for Hydrological Models Based on Neural Networks: The Dropout Ensemble
,”
Stoch. Environ. Res. Risk Assess.
,
35
(
5
), pp.
1051
1067
.
43.
Karkaria
,
V.
,
Goeckner
,
A.
,
Zha
,
R.
,
Chen
,
J.
,
Zhang
,
J.
,
Zhu
,
Q.
,
Cao
,
J.
,
Gao
,
R. X.
, and
Chen
,
W.
,
2024
, “Towards a Digital Twin Framework in Additive Manufacturing: Machine Learning and Bayesian Optimization for Time Series Process Optimization.” http://arxiv.org/abs/2402.17718, Accessed March 7, 2024.
44.
Benoit
,
D. F.
, and
den Poel
,
D. V.
,
2017
, “
bayesQR: A Bayesian Approach to Quantile Regression
,”
J. Stat. Softw.
,
76
(
7
), pp.
1
32
.
45.
Zhang
,
H.
,
Qi
,
Q.
,
Ji
,
W.
, and
Tao
,
F.
,
2023
, “
An Update Method for Digital Twin Multi-Dimension Models
,”
Robot. Comput.-Integr. Manuf.
,
80
, p.
102481
.
46.
Nyaaba
,
W.
,
Frimpong
,
S.
, and
Anani
,
A.
,
2019
, “
Fatigue Damage Investigation of Ultra-Large Tire Components
,”
Int. J. Fatigue
,
119
, pp.
247
260
.
You do not currently have access to this content.