Abstract

Due to inherent compliance and nonlinear behavior, modeling soft robots is highly complex. While the elasticity of their materials provides the robots with adaptability and resilience, it also causes undesirable effects. Cable-driven soft robots are particularly affected by frictional forces, which can significantly alter their deformed shape. Unfortunately, most existing cable friction models have been developed for rigid surfaces and do not account for the interactions between elastic cables and surfaces. As a result, research on cable-driven soft robots often neglects friction due to the difficulty of acquiring data and implementing mathematical models. This article introduces a novel friction model that considers the asperity behavior of both the cable and the friction surface. We propose a new methodology that accurately replicates friction interaction in soft robots, which requires as few as nine data points. The methodology is assessed on four distinct material interactions, comprising two cables with different diameters and materials, and two three-dimensional (3D)-printed surfaces made from polylactic acid (PLA) and thermoplastic polyurethane (TPU). By accurately estimating the nonuniform distribution of the joint deformation caused by friction, the new friction formulation achieves a 2.8% error in predicting a soft gripper’s tip locations, while the current state-of-the-art model shows a 16.1% error. We also demonstrate that, with an accurate friction model, it is possible to optimize the cable routing points to achieve the desired grasping strategy for a soft gripper.

References

1.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
1
), pp.
467
475
.
2.
Wang
,
Y.
,
Xie
,
Z.
,
Huang
,
H.
, and
Liang
,
X.
,
2024
, “
Pioneering Healthcare With Soft Robotic Devices: A Review
,”
Smart Med.
,
3
(
1
), p.
e20230045
.
3.
Fang
,
G.
,
Matte
,
C.-D.
,
Scharff
,
R. B.
,
Kwok
,
T.-H.
, and
Wang
,
C. C.
,
2020
, “
Kinematics of Soft Robots by Geometric Computing
,”
IEEE Trans. Rob.
,
36
(
4
), pp.
1272
1286
.
4.
Kim
,
D.
,
Kim
,
S.-H.
,
Kim
,
T.
,
Kang
,
B. B.
,
Lee
,
M.
,
Park
,
W.
,
Ku
,
S.
,
Kim
,
D.
,
Kwon
,
J.
,
Lee
,
H.
, and
Bae
,
J.
,
2021
, “
Review of Machine Learning Methods in Soft Robotics
,”
PLoS One
,
16
(
2
), p.
e0246102
.
5.
Goh
,
G. L.
,
Huang
,
X.
,
Toh
,
W.
,
Li
,
Z.
,
Lee
,
S.
,
Yeong
,
W. Y.
,
Han
,
B. S.
, and
Ng
,
T. Y.
,
2024
, “
Joint Angle Prediction for a Cable-Driven Gripper With Variable Joint Stiffness Through Numerical Modeling and Machine Learning
,”
Int. J. AI Mater. Des.
,
1
(
1
), p.
2328
.
6.
Salvietti
,
G.
,
Hussain
,
I.
,
Malvezzi
,
M.
, and
Prattichizzo
,
D.
,
2017
, “
Design of the Passive Joints of Underactuated Modular Soft Hands for Fingertip Trajectory Tracking
,”
IEEE Rob. Autom. Lett.
,
2
(
4
), pp.
2008
2015
.
7.
Roy
,
R.
,
Wang
,
L.
, and
Simaan
,
N.
,
2016
, “
Modeling and Estimation of Friction, Extension, and Coupling Effects in Multisegment Continuum Robots
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
909
920
.
8.
Chen
,
D.
,
Yun
,
Y.
, and
Deshpande
,
A. D.
,
2014
, “
Experimental Characterization of Bowden Cable Friction
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, IEEE, pp.
5927
5933
.
9.
Kraus
,
W.
,
Kessler
,
M.
, and
Pott
,
A.
,
2015
, “
Pulley Friction Compensation for Winch-Integrated Cable Force Measurement and Verification on a Cable-Driven Parallel Robot
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, IEEE, pp.
1627
1632
.
10.
Coevoet
,
E.
,
Morales-Bieze
,
T.
,
Largilliere
,
F.
,
Zhang
,
Z.
,
Thieffry
,
M.
,
Sanz-Lopez
,
M.
,
Carrez
,
B.
,
Marchal
,
D.
,
Goury
,
O.
,
Dequidt
,
J.
, and
Duriez
,
C.
,
2017
, “
Software Toolkit for Modeling, Simulation, and Control of Soft Robots
,”
Adv. Rob.
,
31
(
22
), pp.
1208
1224
.
11.
Imado
,
K.
, and
Ghrib
,
T.
,
2011
, “
Frictional Property of Flexible Element
,”
New Tribological Ways
, pp.
235
264
.
12.
Juvinall
,
R. C.
, and
Marshek
,
K. M.
,
2020
,
Fundamentals of Machine Component Design
,
John Wiley & Sons
,
Hoboken, NJ
.
13.
Lubarda
,
V. A.
,
2014
, “
The Mechanics of Belt Friction Revisited
,”
Int. J. Mech. Eng. Edu.
,
42
(
2
), pp.
97
112
.
14.
Heap
,
W. E.
,
Keeley
,
C. T.
,
Yao
,
E. B.
,
Naclerio
,
N. D.
, and
Hawkes
,
E. W.
,
2022
, “
Miniature, Lightweight, High-Force, Capstan Winch for Mobile Robots
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
9873
9880
.
15.
Bowden
,
F. P.
, and
Tabor
,
D.
,
2001
,
The Friction and Lubrication of Solids
, Vol.
1
,
Oxford University Press
,
Oxford, UK
.
16.
Bowden
,
F. P.
, and
Young
,
J.
,
1951
, “
Friction of Diamond, Graphite, and Carbon and the Influence of Surface Films
,”
Proc. R. Soc. London., A.
,
208
(
1095
), pp.
444
455
.
17.
Howell
,
H.
,
1953
, “
24—The General Case of Friction of a String Round a Cylinder
,”
J. Textile Inst. Trans.
,
44
(
8–9
), pp.
T359
T362
.
18.
Jung
,
J. H.
,
Pan
,
N.
, and
Kang
,
T. J.
,
2008
, “
Generalized Capstan Problem: Bending Rigidity, Nonlinear Friction, and Extensibility Effect
,”
Tribol. Int.
,
41
(
6
), pp.
524
534
.
19.
Jung
,
J. H.
,
Pan
,
N.
, and
Kang
,
T. J.
,
2008
, “
Capstan Equation Including Bending Rigidity and Non-Linear Frictional Behavior
,”
Mech. Mach. Theory.
,
43
(
6
), pp.
661
675
.
20.
ASTM International
,
2020
,
ASTM D3108/D3108M-13: Standard Test Method for Coefficient of Friction, Yarn to Solid Material
.
21.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C. M.
,
2007
,
Underactuated Robotic Hands
, Vol.
40
,
Springer
,
New York City
.
22.
Zhou
,
Z.
,
Zheng
,
X.
,
Chen
,
Z.
,
Wang
,
X.
,
Liang
,
B.
, and
Wang
,
Q.
,
2022
, “
Dynamics Modeling and Analysis of Cable-Driven Segmented Manipulator Considering Friction Effects
,”
Mech. Mach. Theory
,
169
(
1
), p.
104633
.
23.
Matte
,
C.-D.
, and
Kwok
,
T.-H.
,
2021
, “
Simulation of Hyperelasticity by Shape Estimation
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
5
), p.
050903
.
24.
Elgeneidy
,
K.
,
Lightbody
,
P.
,
Pearson
,
S.
, and
Neumann
,
G.
,
2019
, “
Characterising 3D-Printed Soft Fin Ray Robotic Fingers With Layer Jamming Capability for Delicate Grasping
,”
IEEE International Conference on Soft Robotics (RoboSoft)
,
Seoul, South Korea
,
Apr. 14–18
, IEEE, pp.
143
148
.
25.
Wan
,
Z.
,
Sun
,
Y.
,
Qin
,
Y.
,
Skorina
,
E. H.
,
Gasoto
,
R.
,
Luo
,
M.
,
Fu
,
J.
, and
Onal
,
C. D.
,
2023
, “
Design, Analysis, and Real-Time Simulation of a 3D Soft Robotic Snake
,”
Soft Rob.
,
10
(
2
), pp.
258
268
.
26.
Clark
,
A. B.
,
Liow
,
L.
, and
Rojas
,
N.
,
2021
, “
Force Evaluation of Tendon Routing for Underactuated Grasping
,”
ASME J. Mech. Des.
,
143
(
10
), p.
104502
.
27.
Sun
,
Y.
,
Liu
,
Y.
,
Zhou
,
N.
, and
Lueth
,
T. C.
,
2021
, “
A Matlab-Based Framework for Designing 3D Topology Optimized Soft Robotic Grippers
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Delft, Netherlands
,
July 12–16
, IEEE, pp.
1283
1289
.
28.
Mohammadi
,
A.
,
Lavranos
,
J.
,
Zhou
,
H.
,
Mutlu
,
R.
,
Alici
,
G.
,
Tan
,
Y.
,
Choong
,
P.
, and
Oetomo
,
D.
,
2020
, “
A Practical 3D-Printed Soft Robotic Prosthetic Hand With Multi-Articulating Capabilities
,”
PLoS One
,
15
(
5
), p.
e0232766
.
29.
Fee
,
J.
, and
Quist
,
D.
,
1992
, “
A New Cable Pulling Friction Measurement Method and Results
,”
IEEE Trans. Power Deliv.
,
7
(
2
), pp.
681
686
.
30.
Vu Hung
,
D.
,
Degrieck
,
J.
,
Van Langenhove
,
L.
, and
Kiekens
,
P.
,
2002
, “
Numerical Simulation of the Yarn-Object Interaction
,”
Text. Res. J.
,
72
(
8
), pp.
657
662
.
31.
Ghosh
,
A.
,
Patanaik
,
A.
,
Anandjiwala
,
R.
, and
Rengasamy
,
R.
,
2008
, “
A Study on Dynamic Friction of Different Spun Yarns
,”
J. Appl. Polym. Sci.
,
108
(
5
), pp.
3233
3238
.
32.
Ramkumar
,
S.
,
Rajanala
,
R.
,
Parameswaran
,
S.
,
Paige
,
R.
,
Shaw
,
A.
,
Shelly
,
D.
,
Anderson
,
T.
,
Cobb
,
G.
,
Mahmud
,
R.
,
Roedel
,
C.
, and
Tock
,
R. W.
,
2004
, “
Experimental Verification of Failure of Amontons’ Law in Polymeric Textiles
,”
J. Appl. Polym. Sci.
,
91
(
6
), pp.
3879
3885
.
33.
Podolsky
,
D. J.
,
Diller
,
E.
,
Fisher
,
D. M.
,
Wong Riff
,
K. W.
,
Looi
,
T.
,
Drake
,
J. M.
, and
Forrest
,
C. R.
,
2019
, “
Utilization of Cable Guide Channels for Compact Articulation Within a Dexterous Three Degrees-of-Freedom Surgical Wrist Design
,”
ASME J. Med. Devices.
,
13
(
1
), p.
011003
.
34.
Akhondi
,
S.
,
Matte
,
C.-D.
, and
Kwok
,
T. H.
,
2023
, “
A Study on Mechanical Behavior of 3D Printed Elastomers With Various Infills and Densities
,”
Manuf. Lett.
,
35
(
1
), pp.
592
602
.
35.
Archard
,
J.
,
1957
, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. London., A.
,
243
(
1233
), pp.
190
205
.
You do not currently have access to this content.