Abstract

The present work describes the early steps in creating a digital twin to predict aging for multi-material adhesive step lap joints (ASLJs), considering simultaneous mechanical and environmental influences. It begins by defining the digital twin context and its specific architecture known as the data-driven digital twin (D3T). For a D3T to work, a theoretical and computational framework must be established to understand how the properties of materials in ASLJs degrade due to environmental damage. The developed framework describes a thermodynamics-based theory for predicting material degradation. The computational implementation of the framework and its performance are evaluated using two models of multi-material ASLJs. The first model contains a single-step ASLJ made of titanium Ti-6Al-4V and carbon epoxy composite with FM-300K adhesive, featuring three variations to show different levels of homogenization. Studies on this model assess the impact of various parameters such as the finite element order, mesh density, damage parameters, and inclusion of damage models for the participating domains. The validation of this model is also provided against experimental data. The second model addresses a multistep ASLJ using the same materials. Predictions from this model are compared favorably with experimental results under two different environmental conditions to gain insights into the aging and performance degradation of the ASLJs. Finally, conclusions and plans close the present paper.

References

1.
Michopoulos
,
J.
,
Apetre
,
N.
,
Iliopoulos
,
A.
, and
Steuben
,
J.
,
2022
, “
Elasto-Plasticity, Damage and Multiphysics Effects on the Behavior of Adhesive Step Lap Joints
,”
Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, Paper No. CIE2022–90996.
2.
Michopoulos
,
J. G.
,
Apetre
,
N. A.
,
Iliopoulos
,
A. P.
, and
Steuben
,
J. C.
,
2022
, “
Effects of Elastoplasticity, Damage, and Environmental Exposure on the Behavior of Adhesive Step-Lap Joints
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
030904
.
3.
Mueller
,
E. M.
,
Starnes
,
S.
,
Strickland
,
N.
,
Kenny
,
P.
, and
Williams
,
C.
,
2016
, “
The Detection, Inspection, and Failure Analysis of a Composite Wing Skin Defect on a Tactical Aircraft
,”
Compos. Struct.
,
145
, pp.
186
193
.
4.
Jones
,
R.
,
Peng
,
D.
,
Michopoulos
,
J. G.
, and
Kinloch
,
A. J.
,
2020
, “
Requirements and Variability Affecting the Durability of Bonded Joints
,”
Materials
,
13
(
6
), p.
1468
.
5.
CMH17
,
2012
,
Polymer Matrix Composites Materials Useage, Design and Analysis
, Vol.
3
,
SAE International
,
Warrendale, PA
.
6.
Potter
,
D.
,
1979
, “
Primary Adhesively Bonded Structure Technology (PABST). Design Handbook for Adhesive Bonding
,” Technical Report. AFFDL-TR-79-2120, Wright-Patterson Air Force Base, OH.
7.
Hart-Smith
,
L. J.
,
1982
, “
Design Methodology for Bonded-Bolted Composite Joints, Vol. I: Analysis Derivations and Illustrative Solutions
,” Technical Report. AFWAL-TR-81-3154, OH.
8.
Hart-Smith
,
L. J.
,
1982
, “
Design Methodology for Bonded-Bolted Composite Joints, Vol. II: User Manual and Computer Codes
,” Technical Report. AFWAL-TR-81-3154, OH.
9.
Hart-Smith
,
L. J.
,
1973
, “
Adhesive-Bonded Single-Lap Joints
,” Technical Report. NASA CR 112236, Hampton, VA.
10.
Jones
,
R.
,
Peng
,
D.
,
Michopoulos
,
J. G.
, and
Kinloch
,
A. J.
,
2020
, “
Requirements and Variability Affecting the Durability of Bonded Joints
,”
MDPI Mater.
,
13
(
6
), pp.
1
23
.
11.
Quaresimin
,
M.
, and
Ricotta
,
M.
,
2006
, “
Fatigue Behaviour and Damage Evolution of Single Lap Bonded Joints in Composite Material
,”
Compos. Sci. Technol.
,
66
(
2
), pp.
176
187
.
12.
Beber
,
V.
,
Schneider
,
B.
, and
Brede
,
M.
,
2015
, “
Influence of Temperature on the Fatigue Behaviour of a Toughened Epoxy Adhesive
,”
J. Adhes.
,
92
(
7–9
), pp.
778
794
.
13.
Gavgali
,
E.
,
Sahin
,
R.
, and
Akpinar
,
S.
,
2021
, “
An Investigation of the Fatigue Performance of Adhesively Bonded Step-Lap Joints: An Experimental and Numerical Analysis
,”
Int. J. Adhes. Adhes.
,
104
, p.
102736
.
14.
Adams
,
R. D.
, and
Peppiatt
,
N. A.
,
1974
, “
Stress Analysis of Adhesive-Bonded Lap Joints
,”
J. Strain Anal.
,
9
(
3
), pp.
185
196
.
15.
Chen
,
D.
, and
Cheng
,
S.
,
1983
, “
An Analysis of Adhesive-Bonded Single-Lap Joints
,”
ASME J. Appl. Mech.
,
50
(
1
), pp.
109
115
.
16.
Tang
,
J.
,
Sridhar
,
I.
, and
Srikanth
,
N.
,
2013
, “
Static and Fatigue Failure Analysis of Adhesively Bonded Thick Composite Single Lap Joints
,”
Compos. Sci. Technol.
,
86
, pp.
18
25
.
17.
Akpinar
,
S.
,
2014
, “
The Strength of the Adhesively Bonded Step-Lap Joints for Different Step Numbers
,”
Compos. Part B: Eng.
,
67
, pp.
170
178
.
18.
Durmuş
,
M.
, and
Akpinar
,
S.
,
2020
, “
The Experimental and Numerical Analysis of the Adhesively Bonded Three-Step-Lap Joints With Different Step Lengths
,”
Theor. Appl. Fract. Mec.
,
105
, p.
102427
.
19.
Michopoulos
,
J.
,
Apetre
,
N.
,
Iliopoulos
,
A.
, and
Steuben
,
J.
,
2024
, “
Towards a Multiphysics-Based Digital Twin for Predicting Aging of Multimaterial Step Lap Joints
,”
Proceedings of the ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, Paper No. IDETC/CIE2024-142589.
20.
Jones
,
D.
,
Snider
,
C.
,
Nassehi
,
A.
,
Yon
,
J.
, and
Hicks
,
B.
,
2020
, “
Characterising the Digital Twin: A Systematic Literature Review
,”
CIRP J. Manuf. Sci. Technol.
,
29
(
Part A
), pp.
36
52
.
21.
Farhat
,
C.
,
Michopoulos
,
J. G.
,
Chang
,
F. K.
,
Guibas
,
L. J.
, and
Lew
,
A. J.
,
2006
, “Towards a Dynamic Data Driven System for Structural and Material Health Monitoring,”
Computational Science – ICCS 2006
,
V. N.
Alexandrov
,
G. D.
van Albada
,
P. M. A.
Sloot
, and
J.
Dongarra
, eds.,
Springer
,
Berlin Heidelberg
, pp.
456
464
.
22.
Michopoulos
,
J.
,
Apetre
,
N.
,
Iliopoulos
,
A.
, and
Steuben
,
J.
,
2024
, “
On a Multiphysics Digital Twin for Aging Prediction of Adhesive Step Lap Joints
,”
Proceedings of the ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, Paper No. CIE2024–143589.
23.
Gelernter
,
D. H.
,
1991
,
Mirror Worlds: Or the Day Software Puts the Universe in a Shoebox—How It Will Happen and What It Will Mean
,
Oxford Scholarship Online. Oxford University Press
,
New York
.
24.
Grieves
,
M.
,
2002
, “
Completing the Cycle: Using PLM Information in the Sales and Service Functions
,”
SME Management Forum
,
Troy, MI
,
Oct. 31
.
25.
Grieves
,
M.
,
2014
, “
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication
,”
White Paper
,
1
(
2014
), pp.
1
7
.
26.
Piascik
,
R.
,
Vickers
,
J.
,
Lowry
,
D.
,
Scotti
,
S.
,
Stewart
,
J.
, and
Calomino
,
A.
,
2010
, “Technology Area 12: Materials, Structures, Mechanical Systems, and Manufacturing Road Map,”
NASA Office of Chief Technologist
,
NASA
,
Washington, DC
, pp.
12
2
.
27.
Michopoulos
,
J. G.
,
Mast
,
P. W.
,
Badaliance
,
R.
, and
Wolock
,
I.
,
1993
, “Health Monitoring of Smart Structures by the Use of Dissipated Energy,”
ASME Proceedings of 93 WAM on Adaptive Structures and Material Systems
, Vol.
AD-Vol 35
,
G.
Carman
, and
E.
Garcia
, eds.,
ASME
,
New York
, pp.
457
462
.
28.
Michopoulos
,
J. G.
,
Mast
,
P. W.
,
Badaliance
,
R.
,
Gause
,
L.
, and
Chaskelis
,
H. H.
,
1995
, “
Health Error Prediction and Sensor Topology Optimization on a Smart Pressure Vessel
,”
Conference of Smart Structures and Materials 1995: Industrial and Commercial Applications of Smart Structures Technologies
, Vol.
2447
,
Society of Photo-Optical Instrumentation Engineers
,
Bellingham, WA
, pp.
155
166
.
29.
Michopoulos
,
J.
,
Tsompanopoulou
,
P.
,
Houstis
,
E.
,
Farhat
,
C.
,
Lesoinne
,
M.
,
Rice
,
J.
, and
Joshi
,
A.
,
2005
, “
On a Data-Driven Environment for Multiphysics Applications
,”
Future Gener. Comput. Syst.
,
21
(
6
), pp.
953
968
.
30.
Michopoulos
,
J. G.
, and
Farhat
,
C.
,
2006
,
Materials and Structures Towards Data-Driven Modeling and Simulation of Multiphysics Degrading Systems
,
Springer
,
The Netherlands
, pp.
1337
1338
.
31.
Michopoulos
,
J. G.
,
Farhat
,
C.
, and
Bou-Mosleh
,
C.
,
2006
, “
On Data-Driven Modeling and Simulation of Aero-Thermo-Mechanically Degrading Nonlinear Continuum Systems
,”
Volume 3: 26th Computers and Information in Engineering Conference
,
ASME
, Paper No. IDETC-CIE2006.
32.
Jurf
,
R. A.
,
1988
,
Environmental Effects on Fracture of Adhesively Bonded Joints
,
ASTM International
,
West Conshohocken, PA
.
33.
Bellini
,
C.
,
Parodo
,
G.
, and
Sorrentino
,
L.
,
2020
, “
Effect of Operating Temperature on Aged Single Lap Bonded Joints
,”
Def. Technol.
,
16
(
2
), pp.
283
289
.
34.
Fan
,
Y.
,
Liu
,
Z.
,
Zhao
,
G.
,
Liu
,
J.
,
Liu
,
Y.
, and
Shangguan
,
L.
,
2022
, “
Influence of Hydrothermal Aging Under Two Typical Adhesives on the Failure of BFRP Single Lap Joint
,”
Polymers
,
14
(
9
), p.
1721
.
35.
Zhao
,
L. C.
,
Karimi
,
S.
, and
Xu
,
L.
,
2023
, “
An Experimental Investigation of Static and Fatigue Behavior of Various Adhesive Single Lap Joints Under Bending Loads Subjected to Hygrothermal and Thermal Conditions
,”
J. Adhes.
,
100
(
9
), pp.
845
866
.
36.
Shu
,
Y.
,
Qiang
,
X.
,
Jiang
,
X.
,
Xiao
,
Y.
, and
Dong
,
H.
,
2024
, “
Long-Term Performance of Single-Lap Joints: Review, Challenges and Prospects in Civil Engineering
,”
Eng. Rep.
,
6
(
12
), p.
e12769
.
37.
Sih
,
G. C.
,
Michopoulos
,
J. G.
, and
Chou
,
S. C.
,
1986
,
Hygrothermoelasticity
,
Martinuus Nijhoff Publishers
,
Dordrecht, The Netherlands
.
38.
Canal
,
L. P.
, and
Michaud
,
V.
,
2014
, “
Micro-Scale Modeling of Water Diffusion in Adhesive Composite Joints
,”
Compos. Struct.
,
111
, pp.
340
348
.
39.
Brito
,
R.
,
Campilho
,
R.
,
Moreira
,
R.
, and
Sánchez-Arce
,
I.
,
2020
, “
Material and Adhesive Effect in Adhesively-Bonded Composite Stepped-Lap Joints
,”
Proc. Inst. Mech. Eng. G: J. Aerosp. Eng.
,
234
(
13
), pp.
1967
1979
.
40.
Moutsompegka
,
E.
,
2020
, “
Evaluation of the Effects of Defects and Ageing on the Strength of Composite Bonded Joints by Mechanical Tests and Numerical Simulation: Implementation of the Novel Centrifuge Test
,”
University of Patras
,
Patras, Greece
.
41.
Gholami
,
M.
,
Afrasiab
,
H.
,
Baghestani
,
A. M.
, and
Fathi
,
A.
,
2021
, “
Hygrothermal Degradation of Elastic Properties of Fiber Reinforced Composites: A Micro-Scale Finite Element Analysis
,”
Compos. Struct.
,
266
, p.
113819
.
42.
Malekinejad
,
H.
,
Carbas
,
R. J. C.
,
Akhavan-Safar
,
A.
,
Marques
,
E. A. S.
,
Castro Sousa
,
F.
, and
da Silva
,
L. F. M.
,
2023
, “
Enhancing Fatigue Life and Strength of Adhesively Bonded Composite Joints: A Comprehensive Review
,”
Materials
,
16
(
19
), p.
6468
.
43.
Michopoulos
,
J. G.
,
Iliopoulos
,
A. P.
,
Steuben
,
J. C.
, and
DeGiorgi
,
V.
,
2017
, “
Towards an Analytical, Computational and Experimental Framework for Predicting Aging of Cathodic Surfaces
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Paper No. CIE2017–67811.
44.
Michopoulos
,
J.
,
Iliopoulos
,
J.
, and
Steuben
,
Degiorgi
,
2018
, “
On the Multiphysics Modeling of Surface Aging Under Cathodic Protection
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p.
031001
.
45.
Prigogine
,
I.
,
1947
,
Etude Thermodynamique Des Phenomenes Irreversible
,
Desoer
,
Liege, Belgium
.
46.
de Groot
,
S.
,
1966
,
Thermodynamics of Irreversible Processes
,
North-Holland
,
Amsterdam
.
47.
Nowacki
,
W.
,
1986
,
Thermoelasticity
, 2nd ed.,
Pergamon Press
,
Oxford, UK
.
48.
Haase
,
R.
,
1990
,
Thermodynamics of Irreversible Processes
(Dover Books on Physics and Chemistry),
Dover
,
New York
. This Dover edition, first published in 1990, is a corrected, slightly enlarged republication of the English translation, revised by the author and published by Addison-Wesley Publishing Company, Reading, Mass., 1969 (in the ’Addison-Wesley series in chemical engineering’). The original German editon was published by Dr. Dietrich Steinkopff Verlag, Darmstadt, Germany, 1963, under the title Thermodynamik der irreversiblen Prozesse”–T.p. verso.
49.
de Groot
,
S. R.
, and
Mazur
,
P.
,
2013
,
Non-Equilibrium Thermodynamics
(
Dover Books on Physics
),
Dover Publications
,
Newburyport, MA
. Description Based Upon Print Version of Record.
50.
Basaran
,
C.
, and
Nie
,
S.
,
2004
, “
An Irreversible Thermodynamics Theory for Damage Mechanics of Solids
,”
Int. J. Damage Mech.
,
13
(
3
), pp.
205
223
.
51.
Michopoulos
,
J.
,
Hermanson
,
J.
,
Iliopoulos
,
A.
,
Lambrakos
,
S.
, and
Furukawa
,
T.
,
2011
, “
Data-Driven Design Optimization for Composite Material Characterization
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021009
.
52.
COMSOL
,
2023
, COMSOL Multiphysics. https://www.comsol.com/
53.
ASTM
,
1995
, “
ASTM D5868-95 Standard Test Method for Lap Shear Adhesion for Fiber-Reinforced Plastic (FRP) Bonding
,” Technical Report, American Society for Testing and Materials, West Conshohocken, PA.
54.
Clay
,
S. B.
,
Pommer
,
A.
,
Mack
,
L.
,
Story
,
C.
, and
Wasilition
,
G.
,
2008
, “
Bonding of Naturally Dissimilar Materials
,” Technical Report. AFRL-RB-WP-TR-2008-3023, OH.
55.
Technical Data Sheet FM 300 Adhesive Film
.
56.
Jangblad
,
D.
,
Gradin
,
P.
, and
Stenström
,
T.
,
1988
, “
Determination and Verification of Elastic Parameters for Adhesives
,” Adhesively Bonded Joints: Testing Analysis, and Design (ASTM STP981), pp.
54
68
.
57.
Yildiz
,
S.
,
Andreopoulos
,
Y.
,
Jensen
,
R. E.
,
Shaffren
,
D.
,
Jahnke
,
D.
, and
Delale
,
F.
,
2019
, “
Characterization of Adhesively Bonded Aluminum Plates Subjected to Shock-Wave Loading
,”
Int. J. Impact Eng.
,
127
, pp.
86
99
.
58.
Lenwari
,
A.
,
Albrecht
,
P.
, and
Albrecht
,
M.
,
2005
,
SED Method of Measuring Yield Strength of Adhesives and Other Materials
,
ASTM International
,
West Conshohocken, PA
.
59.
Kohli
,
D. K.
,
1999
, “
Improved 121 C Curing Epoxy Film Adhesive for Composite Bonding and Repair Applications: FM® 300-2 Adhesive System
,”
Int. J. Adhes. Adhes.
,
19
(
2–3
), pp.
231
242
.
60.
Russell
,
A.
,
1988
, “
A Damage Tolerance Assessment of Bonded Repairs to CF-18 Composite Components. Part 1: Adhesive Properties
,” Technical Report, Defence Research Establishment Pacific, Victoria, BC, Canada.
61.
Collier
,
C.
,
2005
, “
Consistent Structural Integrity and Efficient Certification With Analysis
,” Technical Report AFRL-VA-WP-TR-2005-3033, -3034, -3035, Collier Research Corporation.
62.
Sarfaraz
,
R.
,
Canal
,
L. P.
,
Violakis
,
G.
,
Botsis
,
J.
,
Michaud
,
V.
, and
Limberger
,
H. G.
,
2015
, “
An Experimental-Numerical Investigation of Hydrothermal Response in Adhesively Bonded Composite Structures
,”
Compos. Part A: Appl. Sci. Manuf.
,
73
, pp.
176
185
.
63.
Renaud
,
G.
,
1999
,
Composite Patch Repair Including Thermal Processing Effects: A Finite Element Analysis Capability
,
Citeseer
,
University of Toronto
.
64.
Farhat
,
C.
, and
Roux
,
F.-X.
,
1991
, “
A Method of Finite Element Tearing and Interconnecting and Its Parallel Solution Algorithm
,”
Int. J. Numer. Methods Eng.
,
32
(
6
), pp.
1205
1227
.
65.
Farhat
,
C.
,
Lesoinne
,
M.
,
LeTallec
,
P.
,
Pierson
,
K.
, and
Rixen
,
D.
,
2001
, “
FETI-DP: A Dual–Primal Unified FETI Method—Part I: A Faster Alternative to the Two-Level FETI Method
,”
Int. J. Numer. Methods Eng.
,
50
(
7
), pp.
1523
1544
.
66.
Carlberg
,
K.
,
Bou-Mosleh
,
C.
, and
Farhat
,
C.
,
2011
, “
Efficient Non-Linear Model Reduction Via a Least-Squares Petrov–Galerkin Projection and Compressive Tensor Approximations
,”
Int. J. Numer. Methods Eng.
,
86
(
2
), pp.
155
181
.
67.
Farhat
,
C.
,
Chapman
,
T.
, and
Avery
,
P.
,
2015
, “
Structure-Preserving, Stability, and Accuracy Properties of the Energy-Conserving Sampling and Weighting Method for the Hyper Reduction of Nonlinear Finite Element Dynamic Models
,”
Int. J. Numer. Methods Eng.
,
102
(
5
), pp.
1077
1110
.
68.
Deo
,
R.
, and
Ratwani
,
M.
,
1984
,
Experimental Investigation of Delamination Initiation and Propagation in Composite to Metal Stepped-Lap Joints
,
AIAA
,
Reston, VA
.
You do not currently have access to this content.