Abstract

This article describes the theory behind constraint hypergraphs: a novel modeling framework that can be used to universally represent and simulate complex systems. Multi-domain system models are traditionally compiled from many diverse frameworks, each based on a single domain. Incompatibilities between these frameworks prevent information from being shared resulting in data silos, duplicate work, and knowledge gaps. A constraint hypergraph addresses these problems by providing a universal modeling framework within which all model prescriptions can be expressed. This methodology expands mathematical structures previously explored in the abstract mathematics and systems theory into a new executable framework. Each hypergraph expresses the holistic behavior of a system in a declarative paradigm that describes the relationships between system properties. In addition to modeling, it is shown how constraint hypergraphs can be used for universal, cross-cutting simulation through principles of function composition. The theoretical framework of a constraint hypergraph is demonstrated with a practical representation of a hybrid system, combining a discrete-event simulation and continuous proportional-integral-derivative controller into a single model of an elevator lift system.

References

1.
Boulding
,
K.
,
1956
, “
General Systems Theory: The Skeleton of Science
,”
Manage. Sci.
,
2
(
3
), pp.
197
208
.
2.
Friedenthal
,
S.
,
Moore
,
A.
, and
Steiner
,
R.
,
2015
,
A Practical Guide to SysML : The Systems Modeling Language
, 3rd ed.,
Elsevier
,
Waltham, MA
.
3.
Modelica Association
,
2000
, “Modelica – A Unified Object-Oriented Language for Physical Systems Modeling.”
4.
Larsson
,
J.
,
2003
, “Interoperability in Modeling and Simulation,” Ph.D. thesis, Linköpings Universitet, Linköping, Sweden.
5.
Willems
,
J. C.
,
2007
, “
The Behavioral Approach to Open and Interconnected Systems
,”
IEEE Control Syst. Magaz.
,
27
(
6
), pp.
46
99
.
6.
Hudak
,
P.
,
1989
, “
Conception, Evolution, and Application of Functional Programming Languages
,”
ACM Comput. Surv.
,
21
(
3
), pp.
359
411
.
7.
Rossi
,
F.
,
van Beek
,
P.
, and
Walsh
,
T.
,
2008
, “Constraint Programming,”
Foundations of Artificial Intelligence
, Vol.
3
,
F.
van Harmelen
,
V.
Lifschitz
, and
B.
Porter
, eds.,
Elsevier
,
Amsterdam
, pp.
181
211
.
8.
Kschischang
,
F.
,
Frey
,
B.
, and
Loeliger
,
H.-A.
,
2001
, “
Factor Graphs and the Sum-Product Algorithm
,”
IEEE Trans. Inform. Theory
,
47
(
2
), pp.
498
519
.
9.
Loeliger
,
H.-A.
,
2004
, “
An Introduction to Factor Graphs
,”
IEEE Signal Process. Magaz.
,
21
(
1
), pp.
28
41
.
10.
MacLennan
,
B. J.
,
1990
,
Functional Programming: Practice and Theory
,
Addison-Wesley
,
Reading, MA
.
11.
International Organization for Standardization
,
2023
, “Systems and Software Engineering – System Life Cycle Processes”.
12.
Lee
,
E. A.
,
2021
, “
Determinism
,”
ACM Trans. Embed. Comput. Syst.
,
20
(
5
), pp.
38:1
38:34
.
13.
Willems
,
J. C.
,
1989
, “Models for Dynamics”. In
Dynamics Reported
,
U.
Krichgraber
and
H. O.
Walther
and
B. G.
Teubner
, eds., Vol.
2
.
John Wiley & Sons Ltd
., pp.
171
266
.
14.
Hauser
,
R. M.
, and
Warren
,
J. R.
,
1997
, “
Socioeconomic Indexes for Occupations: A Review, Update, and Critique
,”
Soc. Methodol.
,
27
(
1
), pp.
177
298
.
15.
Lotka
,
A. J.
,
1920
, “
Analytical Note on Certain Rhythmic Relations in Organic Systems
,”
Proc. Natl. Acad. Sci. U S A
,
6
(
7
), pp.
410
415
.
16.
Ouliaris
,
S.
,
2012
, “Economic Models: Simulations of Reality”.
17.
Fong
,
B.
, and
Spivak
,
D. I.
,
2018
, “Seven Sketches in Compositionality: An Invitation to Applied Category Theory”.
18.
Fong
,
B.
,
2016
, “The Algebra of Open and Interconnected Systems,”
Ph.D thesis
,
Oxford University
,
Oxford, UK
.
19.
Baez
,
J. C.
, and
Pollard
,
B. S.
,
2017
, “
A Compositional Framework for Reaction Networks
,”
Rev. Math. Phys.
,
29
(
9
), p.
1750028
.
20.
Patterson
,
E.
,
Spivak
,
D. I.
, and
Vagner
,
D.
,
2021
, “
Wiring Diagrams as Normal Forms for Computing in Symmetric Monoidal Categories
,”
3rd Annual International Applied Category Theory Conference (ACT 2020)
,
Cambridge, MA
.
21.
Patterson
,
E.
,
Baas
,
A.
,
Hosgood
,
T.
, and
Fairbanks
,
J.
,
2022
, “
A Diagrammatic View of Differential Equations in Physics
,”
MINE
,
5
(
2
), pp.
1
59
.
22.
Mac Lane
,
S.
,
1971
, Categories for the Working Mathematician. No. 5 in Graduate Texts in Mathematics. Springer-Verlag, New York.
23.
Palm
,
W. J.
,
2014
, “Block Diagrams, State-Variable Models, and Simulation Methods”. In
System Dynamics
, 3rd ed.,
McGraw-Hill Science
,
New York, NY
, pp.
250
318
.
24.
Borutzky
,
W.
,
2011
,
Bond Graph Modelling of Engineering Systems: Theory, Applications and Software Support
,
Springer
,
New York, NY
.
25.
Paytner
,
H. M.
,
2000
, “The Gestation and Birth of Bond Graphs”.
26.
McPhee
,
J. J.
,
1996
, “
On the Use of Linear Graph Theory in Multibody System Dynamics
,”
Nonlinear Dyn.
,
9
(
1
), pp.
73
90
.
27.
Trent
,
H. M.
,
1955
, “
Isomorphisms Between Oriented Linear Graphs and Lumped Physical Systems
,”
J. Acoust. Soc. Am.
,
27
(
3
), pp.
500
527
.
28.
Fisher
,
I.
,
1896
, “
What is Capital?
Econ. J.
,
6
(
24
), pp.
509
534
.
29.
Baez
,
J.
,
Li
,
X.
,
Libkind
,
S.
,
Osgood
,
N. D.
, and
Patterson
,
E.
,
2023
, “
Compositional Modeling With Stock and Flow Diagrams
,”
Fifth International Conference on Applied Category Theory (ACT2023)
,
Glasgow, UK
.
30.
Chen
,
P. P.-S.
,
1976
, “
The Entity-Relationship Model—Toward a Unified View of Data
,”
ACM Trans. Database Syst.
,
1
(
1
), pp.
9
36
.
31.
Gilbreth
,
F. B.
, and
Gilbreth
,
L. M.
,
1921
, “Process Charts,” In Annual Meeting of The American Society of Mechanical Engineers, American Society of Mechanical Engineers.
32.
Ibe
,
O. C.
,
2013
, Markov Processes for Stochastic Modeling, 2nd ed., Elsevier Insights. Elsevier, London.
33.
Daly
,
R.
,
Shen
,
Q.
, and
Aitken
,
S.
,
2011
, “
Learning Bayesian Networks: Approaches and Issues
,”
Knowl. Eng. Rev.
,
26
(
2
), pp.
99
157
.
34.
Pearl
,
J.
,
2009
,
Causality
,
Cambridge University Press
,
Cambridge
.
35.
Paredis
,
C.
,
Diaz-Calderon
,
A.
,
Sinha
,
R.
, and
Khosla
,
P.
,
2001
, “
Composable Models for Simulation-Based Design
,”
EWC
,
17
(
2
), pp.
112
128
.
36.
Peak
,
R.
,
Paredis
,
C.
,
Tamburini
,
D.
, and
Waterbury
,
S.
,
2005
, “The Composable Object (COB) Knowledge Representation: Enabling Advanced Collaborative Engineering Environments (CEEs),” Technical Report, National Aeronautics and Space Administration.
37.
Object Modeling Group
,
2007
, OMG Systems Modeling Language (OMG SysML).
38.
Friedman
,
G. J.
, and
Leondes
,
C. T.
,
1969
, “
Constraint Theory, Part I: Fundamentals
,”
IEEE Trans. Syst. Sci. Cyber.
,
5
(
1
), pp.
48
56
.
39.
Dechter
,
R.
,
1992
, “Constraint Networks”. In
Encyclopedia of Artificial Intelligence
,
S. C.
Shapiro
, ed., 2nd ed., Vol.
1
,
John Wiley & Sons Inc
.,
New York
, pp.
276
285
.
40.
Lecoutre
,
C.
,
2013
,
Constraint Networks: Targeting Simplicity for Techniques and Algorithms
,
John Wiley & Sons
,
Hoboken, NJ
.
41.
Sinha
,
R.
,
Paredis
,
C. J. J.
,
Liang
,
V.-C.
, and
Khosla
,
P. K.
,
2001
, “
Modeling and Simulation Methods for Design of Engineering Systems
,”
ASME J. Comput. Inf. Sci. Eng
,
1
(
1
), pp.
84
91
.
42.
Morris
,
J.
,
Mocko
,
G.
, and
Wagner
,
J.
,
2025
, “Effects of Functional and Declarative Modeling Frameworks on System Simulation”. [Manuscript submitted for review to the ASME Journal of Dynamic Systems, Measurement and Control].
43.
Andersson
,
C.
,
2016
, “
Methods and Tools for Co-Simulation of Dynamic Systems With the Functional Mock-Up Interface
,” Doctoral Dissertation in Mathematical Sciences,
Lund University
,
Lund, Sweden
.
44.
de Vries
,
T. J. A.
,
Weustink
,
P. B. T.
, and
Cremer
,
J. A.
,
1997
, “
Improving Dynamic System Model Building Through Constraints
,”
Lancaster International Workshop on Engineering Design CACD'97
,
Lancaster
.
45.
Feldkamp
,
F.
,
Heinrich
,
M.
, and
Meyer-Gramann
,
K. D.
,
1998
, “
SyDeR—System Design for Reusability
,”
AIEDAM
,
12
(
4
), pp.
373
382
.
46.
Blochwitz
,
T.
,
Otter
,
M.
,
Arnold
,
M.
,
Bausch
,
C.
,
Clauß
,
C.
,
Elmqvist
,
H.
,
Junghanns
,
A.
,
Mauss
,
J.
,
Monteiro
,
M.
,
Neidhold
,
T.
,
Neumerkel
,
D.
,
Olsson
,
H.
,
Peetz
,
J.-V.
, and
Wolf
,
S.
,
2011
, “
The Functional Mockup Interface for Tool Independent Exchange of Simulation Models
,”
8th International Modelica Conference
,
Dresden, Germany
.
47.
Broman
,
D.
,
Greenberg
,
L.
,
Lee
,
E. A.
,
Masin
,
M.
,
Tripakis
,
S.
, and
Wetter
,
M.
,
2015
, “
Requirements for Hybrid Cosimulation Standards
,”
Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, HSCC ’15, Association for Computing Machinery
, pp.
179
188
.
48.
Wolny
,
S.
,
Mazak
,
A.
,
Carpella
,
C.
,
Geist
,
V.
, and
Wimmer
,
M.
,
2020
, “
Thirteen Years of SysML: A Systematic Mapping Study
,”
Softw. Syst. Model
,
19
(
1
), pp.
111
169
.
49.
Harel
,
D.
, and
Pnueli
,
A.
,
1985
, “Reactive Systems,” In
Logics and Models of Concurrent Systems
,
K.
Apt
, ed.,
Vol. 13 of NATO ASI Series
,
Springer
.
50.
Friedman
,
G. J.
, and
Phan
,
P.
,
2017
, Constraint Theory, Vol. 23 of IFSR International Series on Systems Science and Engineering, Springer International Publishing, Cham.
51.
Gomes
,
C.
,
Thule
,
C.
,
Broman
,
D.
,
Larsen
,
P. G.
, and
Vangheluwe
,
H.
,
2018
, “
Co-Simulation: A Survey
,”
ACM Comput. Surv.
,
51
(
3
), pp.
49:1
49:39
.
52.
Berge
,
C.
,
1973
, Graphs and Hypergraphs, Vol. 6 of North-Holland Mathematical Library, Vol. 6. North-Holland Pub. Co., American Elsevier Pub. Co, Amsterdam, New York.
53.
Herstein
,
I. N.
,
1964
,
Topics in Algebra
, 1st ed.,
Blaisdell Publishing Company
,
Waltham, MA
.
54.
Ausiello
,
G.
,
Giaccio
,
R.
,
Italiano
,
G.
, and
Nanni
,
U.
,
1992
, “Optimal Traversal of Directed Hypergraphs. ICSI Technical Report ICSI TR-92-073,” International Computer Science Institute, Berkeley, CA.
55.
Ausiello
,
G.
, and
Laura
,
L.
,
2017
, “
Directed Hypergraphs: Introduction and Fundamental Algorithms—A Survey
,”
Theor. Comput. Sci.
,
658
(
Part B
), pp.
293
306
.
56.
Diestel
,
R.
,
2017
,
Graph Theory
, Vol.
173
,
Springer
,
Berlin
.
57.
Wymore
,
A. W.
,
1993
, Model-Based Systems Engineering: An Introduction to the Mathematical Theory of Discrete Systems and to the Tricotyledon Theory of System Design. Systems Engineering Series. CRC Press, Boca Raton, FL.
58.
Rossi
,
F.
,
van Beek
,
P.
, and
Walsh
,
T.
,
2007
, Handbook of Constraint Programming. Foundations of Artificial Intelligence. Elsevier, Amsterdam Heidelberg.
59.
Gomes
,
C.
,
Meyers
,
B.
,
Denil
,
J.
,
Thule
,
C.
,
Lausdahl
,
K.
,
Vangheluwe
,
H.
, and
De Meulenaere
,
P.
,
2019
, “
Semantic Adaptation for FMI Co-Simulation With Hierarchical Simulators
,”
Simulation
,
95
(
3
), pp.
241
269
.
60.
Wolf
,
C.
,
Schleipen
,
M.
, and
Frey
,
G.
,
2023
, “
Secure Exchange of Black-Box Simulation Models Using FMI in the Industrial Context
,”
The 15th International Modelica Conference
,
Aachen, Germany
, pp.
487
496
..
61.
Morris
,
J.
,
2024
, “Constraint Hg”.
62.
Moigne
,
J. L.
, and
Smith
,
B.
,
2022
, “Advanced Information Systems Technology (AIST) Earth Systems Digital Twin (ESDT) Workshop Report,” Technical Report, NASA.
63.
Walters
,
A.
,
2019
, “National Digital Twin Programme”.
64.
Walker
,
A.
,
2023
, “Singapore’s Digital Twin – From Science Fiction to Hi-Tech Reality”.
65.
Budiardjo
,
A.
, and
Migliori
,
D.
,
2021
, “Digital Twin System Interoperability Framework,” Technical Report, Digital Twin Consortium.
66.
Akroyd
,
J.
,
Mosbach
,
S.
,
Bhave
,
A.
, and
Kraft
,
M.
,
2020
, “National Digital Twin of the UK – A Knowledge-Graph Approach”.
You do not currently have access to this content.