Abstract

The increasing demand for new energy sources in China, coupled with the abundant waste, has prompted the exploration of converting excess renewable energy into hydrogen through electrolyzers. However, the uncertainty surrounding renewable energy supply, its remote distribution, and regional imbalance with demand pose significant challenges for designing and planning an integrated hydrogen supply chain. This paper addresses this challenge by proposing a two-stage robust optimization model based on ellipsoidal uncertainty sets. We derive a robust approximation model and develop an algorithm using generalized Benders decomposition to solve the resulting model. Extensive numerical experiments demonstrate the superior performance of the proposed algorithm compared to CPLEX. Additionally, a case study utilizing real data from China is presented to showcase the practicality and effectiveness of the proposed model. Finally, we draw conclusions and highlight potential avenues for future research.

References

1.
He
,
B.
,
Yuan
,
X.
,
Qian
,
S.
, and
Li
,
B.
,
2023
, “
Carbon Neutrality: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060809
.
2.
Barbosa-Póvoa
,
A. P.
,
da Silva
,
C.
, and
Carvalho
,
A.
,
2018
, “
Opportunities and Challenges in Sustainable Supply Chain: An Operations Research Perspective
,”
Eur. J. Oper. Res.
,
268
(
2
), pp.
399
431
.
3.
Roozbeh Nia
,
A.
,
Awasthi
,
A.
, and
Bhuiyan
,
N.
,
2021
, “
Industry 4.0 and Demand Forecasting of the Energy Supply Chain: A Literature Review
,”
Comput. Ind. Eng.
,
154
, p.
107128
.
4.
Li
,
L.
,
Manier
,
H.
, and
Manier
,
M.-A.
,
2019
, “
Hydrogen Supply Chain Network Design: An Optimization-Oriented Review
,”
Renew. Sustain. Energy Rev.
,
103
, pp.
342
360
.
5.
Dagdougui
,
H.
,
2012
, “
Models, Methods and Approaches for the Planning and Design of the Future Hydrogen Supply Chain
,”
Int. J. Hydrogen Energy
,
37
(
6
), pp.
5318
5327
.
6.
Ratnakar
,
R. R.
,
Gupta
,
N.
,
Zhang
,
K.
,
van Doorne
,
C.
,
Fesmire
,
J.
,
Dindoruk
,
B.
, and
Balakotaiah
,
V.
,
2021
, “
Hydrogen Supply Chain and Challenges in Large-Scale LH2 Storage and Transportation
,”
Int. J. Hydrogen Energy
,
46
(
47
), pp.
24149
24168
.
7.
Sgarbossa
,
F.
,
Arena
,
S.
,
Tang
,
O.
, and
Peron
,
M.
,
2023
, “
Renewable Hydrogen Supply Chains: A Planning Matrix and an Agenda for Future Research
,”
Int. J. Prod. Econ.
,
255
, p.
108674
.
8.
Agnolucci
,
P.
,
Akgul
,
O.
,
Mcdowall
,
W.
, and
Papageorgiou
,
L. G.
,
2013
, “
The Importance of Economies of Scale, Transport Costs and Demand Patterns in Optimising Hydrogen Fuelling Infrastructure: An Exploration With SHIPMod (Spatial Hydrogen Infrastructure Planning Model)
,”
Int. J. Hydrogen Energy
,
38
(
26
), pp.
11189
11201
.
9.
Almansoori
,
A.
, and
Shah
,
N.
,
2009
, “
Design and Operation of a Future Hydrogen Supply Chain: Multi-period Model
,”
Int. J. Hydrogen Energy
,
34
(
19
), pp.
7883
7897
.
10.
Almansoori
,
A.
, and
Shah
,
N.
,
2012
, “
Design and Operation of a Stochastic Hydrogen Supply Chain Network Under Demand Uncertainty
,”
Int. J. Hydrogen Energy
,
37
(
5
), pp.
3965
3977
.
11.
André
,
J.
,
Auray
,
S.
,
Brac
,
J.
,
De Wolf
,
D.
,
Maisonnier
,
G.
,
Ould-Sidi
,
M.-M.
, and
Simonnet
,
A.
,
2013
, “
Design and Dimensioning of Hydrogen Transmission Pipeline Networks
,”
Eur. J. Oper. Res.
,
229
(
1
), pp.
239
251
.
12.
Dayhim
,
M.
,
Jafari
,
M. A.
, and
Mazurek
,
M.
,
2014
, “
Planning Sustainable Hydrogen Supply Chain Infrastructure With Uncertain Demand
,”
Int. J. Hydrogen Energy
,
39
(
13
), pp.
6789
6801
.
13.
Fazli-Khalaf
,
M.
,
Naderi
,
B.
,
Mohammadi
,
M.
, and
Pishvaee
,
M. S.
,
2020
, “
Design of a Sustainable and Reliable Hydrogen Supply Chain Network Under Mixed Uncertainties: A Case Study
,”
Int. J. Hydrogen Energy
,
45
(
59
), pp.
34503
34531
.
14.
Kim
,
J.
,
Lee
,
Y.
, and
Moon
,
I.
,
2008
, “
Optimization of a Hydrogen Supply Chain Under Demand Uncertainty
,”
Int. J. Hydrogen Energy
,
33
(
18
), pp.
4715
4729
.
15.
Li
,
L.
,
Manier
,
H.
, and
Manier
,
M.-A.
,
2020
, “
Integrated Optimization Model for Hydrogen Supply Chain Network Design and Hydrogen Fueling Station Planning
,”
Comput. Chem. Eng.
,
134
, p.
106683
.
16.
Nunes
,
P.
,
Oliveira
,
F.
,
Hamacher
,
S.
, and
Almansoori
,
A.
,
2015
, “
Design of a Hydrogen Supply Chain With Uncertainty
,”
Int. J. Hydrogen Energy
,
40
(
46
), pp.
16408
16418
.
17.
Ochoa Robles
,
J.
,
Giraud Billoud
,
M.
,
Azzaro-Pantel
,
C.
, and
Aguilar-Lasserre
,
A. A.
,
2019
, “
Optimal Design of a Sustainable Hydrogen Supply Chain Network: Application in an Airport Ecosystem
,”
ACS Sustain. Chem. Eng.
,
7
(
21
), pp.
17587
17597
.
18.
Ogumerem
,
G. S.
,
Kim
,
C.
,
Kesisoglou
,
I.
,
Diangelakis
,
N. A.
, and
Pistikopoulos
,
E. N.
,
2018
, “
A Multi-objective Optimization for the Design and Operation of a Hydrogen Network for Transportation Fuel
,”
Chem. Eng. Res. Des.
,
131
, pp.
279
292
.
19.
Samsatli
,
S.
,
Staffell
,
I.
, and
Samsatli
,
N. J.
,
2016
, “
Optimal Design and Operation of Integrated Wind-Hydrogen-Electricity Networks for Decarbonising the Domestic Transport Sector in Great Britain
,”
Int. J. Hydrogen Energy
,
41
(
1
), pp.
447
475
.
20.
Seo
,
S. K.
,
Yun
,
D. Y.
, and
Lee
,
C.
,
2020
, “
Design and Optimization of a Hydrogen Supply Chain Using a Centralized Storage Model
,”
Appl. Energy
,
262
, p.
114452
.
21.
Talebian
,
H.
,
Herrera
,
O. E.
, and
Mérida
,
W.
,
2019
, “
Spatial and Temporal Optimization of Hydrogen Fuel Supply Chain for Light Duty Passenger Vehicles in British Columbia
,”
Int. J. Hydrogen Energy
,
44
(
47
), pp.
25939
25956
.
22.
Almansoori
,
A.
, and
Betancourt-Torcat
,
A.
,
2016
, “
Design of Optimization Model for a Hydrogen Supply Chain Under Emission Constraints—A Case Study of Germany
,”
Energy
,
111
, pp.
414
429
.
23.
Bique
,
A. O.
,
Maia
,
L.
,
Mantia
,
F. L.
,
Manca
,
D.
, and
Zondervan
,
E.
,
2019
, “
Balancing Costs, Safety and CO2 Emissions in the Design of Hydrogen Supply Chains
,”
Comput. Chem. Eng.
,
129
, p.
106493
.
24.
Ren
,
L.
,
Zhou
,
S.
, and
Ou
,
X.
,
2020
, “
Life-Cycle Energy Consumption and Greenhouse-Gas Emissions of Hydrogen Supply Chains for Fuel-Cell Vehicles in China
,”
Energy
,
209
, p.
118482
.
25.
Samsatli
,
S.
, and
Samsatli
,
N. J.
,
2015
, “
A General Spatio-temporal Model of Energy Systems With a Detailed Account of Transport and Storage
,”
Comput. Chem. Eng.
,
80
, pp.
155
176
.
26.
Reuss
,
M.
,
Grube
,
T.
,
Robinius
,
M.
,
Preuster
,
P.
,
Wasserscheid
,
P.
, and
Stolten
,
D.
,
2019
, “
Seasonal Storage and Alternative Carriers: A Flexible Hydrogen Supply Chain Model (vol 200, 290, 2017)
,”
Appl. Energy
,
256
, p.
3
.
27.
Li
,
J. R.
,
Lin
,
J.
,
Zhang
,
H. C.
,
Song
,
Y. H.
,
Chen
,
G.
,
Ding
,
L. J.
, and
Liang
,
D. X.
,
2020
, “
Optimal Investment of Electrolyzers and Seasonal Storages in Hydrogen Supply Chains Incorporated With Renewable Electric Networks
,”
IEEE Trans. Sustain. Energy
,
11
(
3
), pp.
1773
1784
.
28.
Feng
,
Y.
, and
Menezes
,
M. B.
,
2022
, “
Integrated Production and Renewable Energy Generation in the Presence of Hydrogen Energy Storage
,”
Prod. Oper. Manage.
,
31
(
5
), pp.
2222
2236
.
29.
Bique
,
A. O.
, and
Zondervan
,
E.
,
2018
, “
An Outlook Towards Hydrogen Supply Chain Networks in 2050-Design of Novel Fuel Infrastructures in Germany
,”
Chem. Eng. Res. Des.
,
134
, pp.
90
103
.
30.
Colbertaldo
,
P.
,
Guandalini
,
G.
, and
Campanari
,
S.
,
2018
, “
Modelling the Integrated Power and Transport Energy System: The Role of Power-to-Gas and Hydrogen in Long-Term Scenarios for Italy
,”
Energy
,
154
, pp.
592
601
.
31.
Kang
,
J. E.
, and
Recker
,
W.
,
2015
, “
Strategic Hydrogen Refueling Station Locations With Scheduling and Routing Considerations of Individual Vehicles
,”
Transp. Sci.
,
49
(
4
), pp.
767
783
.
32.
Ruszczyński
,
A.
, and
Shapiro
,
A.
,
2003
, “Stochastic Programming Models,”
Handbooks in Operations Research and Management Science
, Vol.
10
,
Elsevier
, pp.
1
64
.
33.
Bique
,
A. O.
,
Maia
,
L. K. K.
,
Grossmann
,
I. E.
, and
Zondervan
,
E.
,
2023
, “
Design of Hydrogen Supply Chains Under Demand Uncertainty—A Case Study of Passenger Transport in Germany
,”
Phys. Sci. Rev.
,
8
(
6
), pp.
741
762
.
34.
Robles
,
J. O.
,
Azzaro-Pantel
,
C.
, and
Aguilar-Lasserre
,
A.
,
2020
, “
Optimization of a Hydrogen Supply Chain Network Design Under Demand Uncertainty by Multi-objective Genetic Algorithms
,”
Comput. Chem. Eng.
,
140
, p.
106853
.
35.
Xu
,
J.
,
Li
,
Q.
,
Li
,
J.
,
Zhang
,
Z.-H.
, and
Zheng
,
L.
,
2024
, “
Robust Design of a Green Hydrogen Supply Chain Under Spatiotemporal Imbalance
,”
IEEE Trans. Autom. Sci. Eng.
, pp.
1
15
.
36.
Segawa
,
Y.
,
Endo
,
N.
,
Shimoda
,
E.
, and
Maeda
,
T.
,
2022
, “
Pilot-Scale Hydrogen Energy Utilization System Demonstration: A Commercial Building Case Study on On-Site Green Hydrogen Production and Use
,”
Int. J. Hydrogen Energy
,
47
(
36
), pp.
15982
15991
.
37.
Ben-Tal
,
A.
,
De Waegenaere
,
A.
,
Melenberg
,
B.
, and
Rennen
,
G.
,
2013
, “
Robust Solutions of Optimization Problems Affected by Uncertain Probabilities
,”
Manage. Sci.
,
59
(
2
), pp.
341
357
.
38.
Baron
,
O.
,
Milner
,
J.
, and
Naseraldin
,
H.
,
2011
, “
Facility Location: A Robust Optimization Approach
,”
Prod. Oper. Manage.
,
20
(
5
), pp.
772
785
.
39.
Ruiwei Jiang
,
Y. G.
, and
Watson
,
J.-P.
,
2016
, “
Risk-Averse Stochastic Unit Commitment With Incomplete Information
,”
IIE Trans.
,
48
(
9
), pp.
838
854
.
40.
Li
,
P.
,
Guan
,
X.
,
Wu
,
J.
, and
Zhou
,
X.
,
2015
, “
Modeling Dynamic Spatial Correlations of Geographically Distributed Wind Farms and Constructing Ellipsoidal Uncertainty Sets for Optimization-Based Generation Scheduling
,”
IEEE Trans. Sustain. Energy
,
6
(
4
), pp.
1594
1605
.
You do not currently have access to this content.