Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

While existing research has focused on using graphene platelets (GPLs) as reinforcement for homogeneous matrices, this study proposes a new nanocomposite for plate structures consisting of GPLs incorporated into a conventional functionally graded matrix with the aim of enhancing their overall stiffness. The performance of such plates is evaluated via free vibration and buckling analyses in the present study. Note that the matrix phase is graded continuously with the power law distribution across the plate's thickness, whereas various GPL dispersion patterns along the thickness are studied. The material properties of the typical functionally graded matrix are determined by the rule of mixture, and then those of the composite are estimated by the modified Halpin–Tsai model as well as the rule of mixture. Based on Hamilton's principle and the novel four-unknown refined plate theory (RPT4), the governing equations of the plate are developed. The Navier-type solution scheme is then adopted to get the critical buckling load and natural frequency of the nanocomposite plate. Numerical findings are examined to evaluate the novel nanocomposite plate model, and a parametric study is also conducted. In addition, high-accurate results are provided via the Navier-type solution here as benchmark solutions for further studies on functionally graded material structures reinforced by GPLs.

References

1.
Koizumi
,
M.
,
1997
, “
FGM Activities in Japan
,”
Composites, Part B
,
28
(
1–2
), pp.
1
4
.
2.
Tran
,
M.-T.
,
Nguyen
,
V.-L.
,
Pham
,
S.-D.
, and
Rungamornrat
,
J.
,
2020
, “
Free Vibration of Stiffened Functionally Graded Circular Cylindrical Shell Resting on Winkler–Pasternak Foundation With Different Boundary Conditions Under Thermal Environment
,”
Acta Mech.
,
231
(
6
), pp.
2545
2564
.
3.
Zhang
,
B.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Nelaturi
,
S.
,
2018
, “
Additive Manufacturing of Functionally Graded Material Objects: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041002
.
4.
Thai
,
H. T.
, and
Kim
,
S. E.
,
2015
, “
A Review of Theories for the Modeling and Analysis of Functionally Graded Plates and Shells
,”
Compos. Struct.
,
128
, pp.
70
86
.
5.
Zhao
,
X.
,
Lee
,
Y. Y.
, and
Liew
,
K. M.
,
2009
, “
Free Vibration Analysis of Functionally Graded Plates Using the Element-Free kp-Ritz Method
,”
J. Sound Vib.
,
319
(
3
), pp.
918
939
.
6.
Hosseini-Hashemi
,
S.
,
Rokni Damavandi Taher
,
H.
,
Akhavan
,
H.
, and
Omidi
,
M.
,
2010
, “
Free Vibration of Functionally Graded Rectangular Plates Using First-Order Shear Deformation Plate Theory
,”
Appl. Math. Model.
,
34
(
5
), pp.
1276
1291
.
7.
Thai
,
H.-T.
, and
Vo
,
T. P.
,
2013
, “
A New Sinusoidal Shear Deformation Theory for Bending, Buckling, and Vibration of Functionally Graded Plates
,”
Appl. Math. Model.
,
37
(
5
), pp.
3269
3281
.
8.
Bouazza
,
M.
, and
Benseddiq
,
N.
,
2015
, “
Analytical Modeling for the Thermoelastic Buckling Behavior of Functionally Graded Rectangular Plates Using Hyperbolic Shear Deformation Theory Under Thermal Loadings
,”
Multidiscip. Model. Mater. Struct.
,
11
(
4
), pp.
558
578
.
9.
Han
,
S.-C.
,
Park
,
W.-T.
, and
Jung
,
W.-Y.
,
2015
, “
A Four-Variable Refined Plate Theory for Dynamic Stability Analysis of S-FGM Plates Based on Physical Neutral Surface
,”
Compos. Struct.
,
131
, pp.
1081
1089
.
10.
Hamza Madjid
,
B.
, and
Bachir
,
B.
,
2023
, “
Mechanical Buckling Analysis of Functionally Graded Plates Using an Accurate Shear Deformation Theory
,”
Mech. Adv. Mater. Struc.
,
30
(
22
), pp.
4652
4662
.
11.
Cuong-Le
,
T.
,
Nguyen
,
K. D.
,
Nguyen-Trong
,
N.
,
Khatir
,
S.
,
Nguyen-Xuan
,
H.
, and
Abdel-Wahab
,
M.
,
2021
, “
A Three-Dimensional Solution for Free Vibration and Buckling of Annular Plate, Conical, Cylinder and Cylindrical Shell of FG Porous-Cellular Materials Using IGA
,”
Compos. Struct.
,
259
, p.
113216
.
12.
Thanh
,
C. L.
,
Nguyen
,
T. N.
,
Vu
,
T. H.
,
Khatir
,
S.
, and
Abdel Wahab
,
M.
,
2022
, “
A Geometrically Nonlinear Size-Dependent Hypothesis for Porous Functionally Graded Micro-Plate
,”
Eng. Comput.
,
38
(
1
), pp.
449
460
.
13.
Daikh
,
A. A.
,
Belarbi
,
M.-O.
,
Khechai
,
A.
,
Li
,
L.
,
Khatir
,
S.
,
Abdelrahman
,
A. A.
, and
Eltaher
,
M. A.
,
2023
, “
Bending of Bi-Directional Inhomogeneous Nanoplates Using Microstructure-Dependent Higher-Order Shear Deformation Theory
,”
Eng. Struct.
,
291
, p.
116230
.
14.
Ghandourah
,
E. E.
,
Daikh
,
A. A.
,
Khatir
,
S.
,
Alhawsawi
,
A. M.
,
Banoqitah
,
E. M.
, and
Eltaher
,
M. A.
,
2023
, “
A Dynamic Analysis of Porous Coated Functionally Graded Nanoshells Rested on Viscoelastic Medium
,”
Mathematics
,
11
(
10
), p.
2407
.
15.
Nguyen-Ngoc
,
H.
,
Cuong-Le
,
T.
,
Nguyen
,
K. D.
,
Nguyen-Xuan
,
H.
, and
Abdel-Wahab
,
M.
,
2023
, “
Three-Dimensional Polyhedral Finite Element Method for the Analysis of Multi-Directional Functionally Graded Solid Shells
,”
Compos. Struct.
,
305
, p.
116538
.
16.
Khatir
,
S.
,
Tiachacht
,
S.
,
Le Thanh
,
C.
,
Ghandourah
,
E.
,
Mirjalili
,
S.
, and
Abdel Wahab
,
M.
,
2021
, “
An Improved Artificial Neural Network Using Arithmetic Optimization Algorithm for Damage Assessment in FGM Composite Plates
,”
Compos. Struct.
,
273
, p.
114287
.
17.
Ghandourah
,
E.
,
Bendine
,
K.
,
Khatir
,
S.
,
Benaissa
,
B.
,
Banoqitah
,
E. M.
,
Alhawsawi
,
A. M.
, and
Moustafa
,
E. B.
,
2023
, “
Novel Approach-Based Sparsity for Damage Localization in Functionally Graded Material
,”
Buildings
,
13
(
7
), p.
1768
.
18.
Huang
,
X.
,
Qi
,
X.
,
Boey
,
F.
, and
Zhang
,
H.
,
2012
, “
Graphene-Based Composites
,”
Chem. Soc. Rev.
,
41
(
2
), pp.
666
686
.
19.
Nguyen
,
V.-L.
,
Limkatanyu
,
S.
,
Bui
,
T. Q.
, and
Rungamornrat
,
J.
,
2023
, “
Free Vibration Analysis of Rotating Stiffened Functionally Graded Graphene-Platelet-Reinforced Composite Toroidal Shell Segments With Novel Four-Unknown Refined Theories
,”
Int. J. Mech. Mater. Des.
,
19
(
2
), pp.
319
350
.
20.
Nguyen
,
V.-L.
,
Limkatanyu
,
S.
, and
Rungamornrat
,
J.
,
2023
, “
Free Vibration Analysis of Toroidal Shell Segments With Novel Four-Unknown Refined Theory
,”
Proceedings of the 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022: EASEC-17
,
Singapore
,
June 27–30
, pp.
873
883
.
21.
Nguyen
,
V.-L.
,
Tran
,
M.-T.
,
Limkatanyu
,
S.
,
Mohammad-Sedighi
,
H.
, and
Rungamornrat
,
J.
,
2022
, “
Reddy's Third-Order Shear Deformation Shell Theory for Free Vibration Analysis of Rotating Stiffened Advanced Nanocomposite Toroidal Shell Segments in Thermal Environments
,”
Acta Mech.
,
233
(
11
), pp.
4659
4684
.
22.
Nieto
,
A.
,
Bisht
,
A.
,
Lahiri
,
D.
,
Zhang
,
C.
, and
Agarwal
,
A.
,
2017
, “
Graphene Reinforced Metal and Ceramic Matrix Composites: A Review
,”
Int. Mater. Rev.
,
62
(
5
), pp.
241
302
.
23.
Liu
,
J.
,
Yan
,
H.
, and
Jiang
,
K.
,
2013
, “
Mechanical Properties of Graphene Platelet-Reinforced Alumina Ceramic Composites
,”
Ceram. Int.
,
39
(
6
), pp.
6215
6221
.
24.
Li
,
S.
,
Luo
,
X.
,
Wei
,
C.
,
Gao
,
P.
,
Wang
,
P.
, and
Zhou
,
L.
,
2020
, “
Enhanced Strength and Toughness of Silicon Carbide Ceramics by Graphene Platelet-Derived Laminated Reinforcement
,”
J. Alloys Compd.
,
834
, p.
155252
.
25.
Liu
,
J.
,
Wu
,
M.
,
Yang
,
Y.
,
Yang
,
G.
,
Yan
,
H.
, and
Jiang
,
K.
,
2018
, “
Preparation and Mechanical Performance of Graphene Platelet Reinforced Titanium Nanocomposites for High Temperature Applications
,”
J. Alloys Compd.
,
765
, pp.
1111
1118
.
26.
Li
,
D.
,
Liu
,
Y.
, and
Zhang
,
X.
,
2013
, “
A Layerwise/Solid-Element Method of the Linear Static and Free Vibration Analysis for the Composite Sandwich Plates
,”
Composites, Part B
,
52
, pp.
187
198
.
27.
Reddy
,
J.
, and
Liu
,
C.
,
1985
, “
A Higher-Order Shear Deformation Theory of Laminated Elastic Shells
,”
Int. J. Eng. Sci.
,
23
(
3
), pp.
319
330
.
28.
Reddy
,
J. N.
,
2003
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC Press
,
New York
.
29.
Thai
,
C. H.
,
Ferreira
,
A. J. M.
,
Bordas
,
S. P. A.
,
Rabczuk
,
T.
, and
Nguyen-Xuan
,
H.
,
2014
, “
Isogeometric Analysis of Laminated Composite and Sandwich Plates Using a New Inverse Trigonometric Shear Deformation Theory
,”
Eur. J. Mech. A Solids
,
43
, pp.
89
108
.
30.
Tran
,
T. T.
,
Tran
,
V. K.
,
Pham
,
Q.-H.
, and
Zenkour
,
A. M.
,
2021
, “
Extended Four-Unknown Higher-Order Shear Deformation Nonlocal Theory for Bending, Buckling and Free Vibration of Functionally Graded Porous Nanoshell Resting on Elastic Foundation
,”
Compos. Struct.
,
264
, p.
113737
.
31.
Nguyen
,
V.-L.
,
Tran
,
M.-T.
,
Nguyen
,
V.-L.
, and
Le
,
Q.-H.
,
2021
, “
Static Behaviour of Functionally Graded Plates Resting on Elastic Foundations Using Neutral Surface Concept
,”
Arch. Mech. Eng.
,
68
(
1
), pp.
5
22
.
32.
Shimpi
,
R. P.
, and
Patel
,
H. G.
,
2006
, “
Free Vibrations of Plate Using Two Variable Refined Plate Theory
,”
J. Sound Vib.
,
296
(
4
), pp.
979
999
.
33.
Thai
,
H.-T.
, and
Choi
,
D.-H.
,
2011
, “
A Refined Plate Theory for Functionally Graded Plates Resting on Elastic Foundation
,”
Compos. Sci. Technol.
,
71
(
16
), pp.
1850
1858
.
34.
Thai
,
H.-T.
, and
Kim
,
S.-E.
,
2013
, “
A Simple Higher-Order Shear Deformation Theory for Bending and Free Vibration Analysis of Functionally Graded Plates
,”
Compos. Struct.
,
96
, pp.
165
173
.
35.
Tounsi
,
A.
,
Houari
,
M. S. A.
,
Benyoucef
,
S.
, and
Adda Bedia
,
E. A.
,
2013
, “
A Refined Trigonometric Shear Deformation Theory for Thermoelastic Bending of Functionally Graded Sandwich Plates
,”
Aerosp. Sci. Technol.
,
24
(
1
), pp.
209
220
.
36.
Sayyad
,
A. S.
, and
Ghugal
,
Y. M.
,
2019
, “
Effects of Nonlinear Hygrothermomechanical Loading on Bending of FGM Rectangular Plates Resting on Two-Parameter Elastic Foundation Using Four-Unknown Plate Theory
,”
J. Therm. Stresses
,
42
(
2
), pp.
213
232
.
37.
Jung
,
W.-Y.
,
Han
,
S.-C.
, and
Park
,
W.-T.
,
2016
, “
Four-Variable Refined Plate Theory for Forced-Vibration Analysis of Sigmoid Functionally Graded Plates on Elastic Foundation
,”
Int. J. Mech. Sci.
,
111–112
, pp.
73
87
.
38.
Barati
,
M. R.
,
Shahverdi
,
H.
, and
Zenkour
,
A. M.
,
2017
, “
Electro-Mechanical Vibration of Smart Piezoelectric FG Plates With Porosities According to a Refined Four-Variable Theory
,”
Mech. Adv. Mater. Struct.
,
24
(
12
), pp.
987
998
.
39.
Rezaei
,
A. S.
,
Saidi
,
A. R.
,
Abrishamdari
,
M.
, and
Mohammadi
,
M. H. P.
,
2017
, “
Natural Frequencies of Functionally Graded Plates With Porosities via a Simple Four Variable Plate Theory: An Analytical Approach
,”
Thin Walled Struct.
,
120
, pp.
366
377
.
40.
El Meiche
,
N.
,
Tounsi
,
A.
,
Ziane
,
N.
,
Mechab
,
I.
, and
Adda Bedia
,
E. A.
,
2011
, “
A new Hyperbolic Shear Deformation Theory for Buckling and Vibration of Functionally Graded Sandwich Plate
,”
Int. J. Mech. Sci.
,
53
(
4
), pp.
237
247
.
41.
Mechab
,
I.
,
Mechab
,
B.
, and
Benaissa
,
S.
,
2013
, “
Static and Dynamic Analysis of Functionally Graded Plates Using Four-Variable Refined Plate Theory by the New Function
,”
Composites, Part B
,
45
(
1
), pp.
748
757
.
42.
Thai
,
H.-T.
, and
Choi
,
D.-H.
,
2013
, “
Finite Element Formulation of Various Four Unknown Shear Deformation Theories for Functionally Graded Plates
,”
Finite Elem. Anal. Des.
,
75
, pp.
50
61
.
43.
Tran
,
L. V.
,
Thai
,
C. H.
,
Le
,
H. T.
,
Gan
,
B. S.
,
Lee
,
J.
, and
Nguyen-Xuan
,
H.
,
2014
, “
Isogeometric Analysis of Laminated Composite Plates Based on a Four-Variable Refined Plate Theory
,”
Eng. Anal. Boundary Elem.
,
47
, pp.
68
81
.
44.
Yu
,
T. T.
,
Yin
,
S.
,
Bui
,
T. Q.
, and
Hirose
,
S.
,
2015
, “
A Simple FSDT-Based Isogeometric Analysis for Geometrically Nonlinear Analysis of Functionally Graded Plates
,”
Finite Elem. Anal. Des.
,
96
, pp.
1
10
.
45.
Vo
,
D.
,
Nanakorn
,
P.
,
Bui
,
T. Q.
, and
Rungamornrat
,
J.
,
2022
, “
On Invariance of Spatial Isogeometric Timoshenko–Ehrenfest Beam Formulations for Static Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
394
, p.
114883
.
46.
Thanh
,
C.-L.
,
Ferreira
,
A. J. M.
, and
Abdel Wahab
,
M.
,
2019
, “
A Refined Size-Dependent Couple Stress Theory for Laminated Composite Micro-Plates Using Isogeometric Analysis
,”
Thin Walled Struct.
,
145
, p.
106427
.
47.
Cuong-Le
,
T.
,
Hoang-Le
,
M.
,
Ferreira
,
A. J. M.
, and
Abdel Wahab
,
M.
,
2022
, “
Small Size-Effect Isogeometric Analysis for Linear and Nonlinear Responses of Porous Metal Foam Microplate
,”
Compos. Struct.
,
285
, p.
115189
.
48.
Dang-Trung
,
H.
,
Yang
,
D.-J.
, and
Liu
,
Y. C.
,
2018
, “
Improvements in Shear Locking and Spurious Zero Energy Modes Using Chebyshev Finite Element Method
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
011006
.
49.
Mishra
,
V.
, and
Suresh
,
K.
,
2010
, “
Dual Representation Methods for Efficient and Automatable Analysis of 3D Plates
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
4
), p.
041002
.
50.
Leonetti
,
L.
,
Nguyen-Xuan
,
H.
, and
Liu
,
G.-R.
,
2023
, “
A New Mixed Node-Based Solid-Like Finite Element Method (MNS-FEM) for Laminated Shell Structures
,”
Thin Walled Struct.
,
192
, p.
111126
.
51.
To
,
C. W. S.
,
2009
, “
Large Nonlinear Responses of Spatially Nonhomogeneous Stochastic Shell Structures Under Nonstationary Random Excitations
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
041002
.
52.
Van Long
,
N.
,
Nguyen
,
V.-L.
,
Tran
,
M.-T.
, and
Thai
,
D.-K.
,
2022
, “
Exact Solution for Nonlinear Static Behaviors of Functionally Graded Beams With Porosities Resting on Elastic Foundation Using Neutral Surface Concept
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
236
(
1
), pp.
481
495
.
53.
Tran
,
M.-T.
,
Pham
,
H.-A.
,
Nguyen
,
V.-L.
, and
Trinh
,
A.-T.
,
2017
, “
Optimisation of Stiffeners for Maximum Fundamental Frequency of Cross-Ply Laminated Cylindrical Panels Using Social Group Optimisation and Smeared Stiffener Method
,”
Thin Walled Struct.
,
120
, pp.
172
179
.
54.
Tjong
,
S. C.
,
2013
, “
Recent Progress in the Development and Properties of Novel Metal Matrix Nanocomposites Reinforced With Carbon Nanotubes and Graphene Nanosheets
,”
Mater. Sci. Eng. R Rep.
,
74
(
10
), pp.
281
350
.
55.
Zhao
,
S.
,
Zhao
,
Z.
,
Yang
,
Z.
,
Ke
,
L.
,
Kitipornchai
,
S.
, and
Yang
,
J.
,
2020
, “
Functionally Graded Graphene Reinforced Composite Structures: A Review
,”
Eng. Struct.
,
210
, p.
110339
.
56.
Jones
,
R. M.
,
2018
,
Mechanics of Composite Materials
,
CRC Press
,
Boca Raton, FL
.
57.
Reddy
,
J.
,
2002
,
Energy Principles and Variational Methods in Applied Mechanics
,
John Wiley & Sons
,
Hoboken, NJ
.
58.
Jafari
,
P.
, and
Kiani
,
Y.
,
2021
, “
Free Vibration of Functionally Graded Graphene Platelet Reinforced Plates: A Quasi 3D Shear and Normal Deformable Plate Model
,”
Compos. Struct.
,
275
, p.
114409
.
59.
Thai
,
H.-T.
, and
Choi
,
D.-H.
,
2012
, “
An Efficient and Simple Refined Theory for Buckling Analysis of Functionally Graded Plates
,”
Appl. Math. Model.
,
36
(
3
), pp.
1008
1022
.
60.
Nguyen
,
P.-C.
, and
Pham
,
Q.-H.
,
2023
, “
A Nonlocal Isogeometric Model for Buckling and Dynamic Instability Analyses of FG Graphene Platelets-Reinforced Nanoplates
,”
Mater. Today Commun.
,
34
, p.
105211
.
61.
Thai
,
C. H.
,
Ferreira
,
A.
,
Tran
,
T.
, and
Phung-Van
,
P.
,
2020
, “
A Size-Dependent Quasi-3D Isogeometric Model for Functionally Graded Graphene Platelet-Reinforced Composite Microplates Based on the Modified Couple Stress Theory
,”
Compos. Struct.
,
234
, p.
111695
.
You do not currently have access to this content.