Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Monitoring the condition of rotating machinery offers a salient tool for predictive maintenance of rolling elements subjected to continuous working loads, wear, fatigue, and degradation. In this study, an enhanced computational tool for bearing fault simulation and feature extraction is proposed. A subsequent identification scheme is realized, through Bayesian optimization of hyperparameters, including support vector classifier (SVC), gradient boosting (GBoost), random forest (RF), extreme gradient boosting (XBoost), light gradient boosting machine (LightGBM), and categorical boosting (CatBoost). The proposed hyperparameter optimization technique stands out from traditional methods by offering a more informed and efficient pathway to optimal performance in predictive maintenance. By using Bayesian optimization for hyperparameter tuning of machine learning models, which has not been extensively explored in this field, our approach shows significant advancements. Typical instances of bearing faults like inner race, outer race, and ball faults are considered. The analysis relies on the extraction of statistical and engineering characteristics from the collected response signals, including kurtosis, root mean square, peak, and ridge factor. Highly influential variables are highlighted on the basis of feature selection and importance algorithms, allowing bearing fault classification. We demonstrate that SVC and LightGBM produce over 97% of accuracy at low computational cost. This approach constitutes a robust and scalable framework for similar applications in engineering diagnostics.

References

1.
Marble
,
S.
, and
Tow
,
D.
,
2006
, “
Bearing Health Monitoring and Life Extension in Satellite Momentum/Reaction Wheels
,”
2006 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 4–11
,
IEEE
, p.
7
.
2.
Lenjani
,
A.
,
Dyke
,
S.
,
Bilionis
,
I.
,
Yeum
,
C.
,
Choi
,
J.
,
Lund
,
A.
, and
Maghareh
,
A.
,
2019
, “
Hierarchical Convolutional Neural Networks Information Fusion for Activity Source Detection in Smart Buildings
,”
Structural Health Monitoring 2019. Enabling Intellingent Life-Cycle Health Management for Industry Internet of Things (IIOT)
,
Stanford, CA
.
3.
Zio
,
E.
,
2022
, “
Prognostics and Health Management (PHM): Where Are We and Where Do We (Need to) Go in Theory and Practice
,”
Reliab. Eng. Syst. Saf.
,
218
(
Part A
), p.
108119
.
4.
Hu
,
Y.
,
Miao
,
X.
,
Si
,
Y.
,
Pan
,
E.
, and
Zio
,
E.
,
2022
, “
Prognostics and Health Management: A Review From the Perspectives of Design, Development and Decision
,”
Reliab. Eng. Syst. Saf.
,
217
(
1
), p.
108063
.
5.
Kumar
,
S.
, and
Ganga
,
D.
,
2024
, “
Combinational Framework for Classification of Bearing Faults in Rotating Machines
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
2
), p.
021012
.
6.
Rathore
,
M. S.
, and
Harsha
,
S.
,
2024
, “
Unsupervised Domain Deep Transfer Learning Approach for Rolling Bearing Remaining Useful Life Estimation
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
2
), p.
021002
.
7.
Daigle
,
M. J.
, and
Goebel
,
K.
,
2013
, “
Model-Based Prognostics With Concurrent Damage Progression Processes
,”
IEEE. Trans. Syst. Man. Cybernet.: Syst.
,
43
(
3
), pp.
535
546
.
8.
Lou
,
X.
, and
Loparo
,
K. A.
,
2004
, “
Bearing Fault Diagnosis Based on Wavelet Transform and Fuzzy Inference
,”
Mech. Syst. Signal. Process.
,
18
(
5
), pp.
1077
1095
.
9.
Cao
,
H.
,
Niu
,
L.
,
Xi
,
S.
, and
Chen
,
X.
,
2018
, “
Mechanical Model Development of Rolling Bearing-rotor Systems: A Review
,”
Mech. Syst. Signal. Process.
,
102
(
1
), pp.
37
58
.
10.
Lei
,
Y.
,
Li
,
N.
,
Guo
,
L.
,
Li
,
N.
,
Yan
,
T.
, and
Lin
,
J.
,
2018
, “
Machinery Health Prognostics: A Systematic Review From Data Acquisition to RUL Prediction
,”
Mech. Syst. Signal. Process.
,
104
(
1
), pp.
799
834
.
11.
Soave
,
E.
,
D’Elia
,
G.
, and
Dalpiaz
,
G.
,
2023
, “
Prognostics of Rotating Machines Through Generalized Gaussian Hidden Markov Models
,”
Mech. Syst. Signal. Process.
,
185
(
1
), p.
109767
.
12.
Avci
,
O.
,
Abdeljaber
,
O.
,
Kiranyaz
,
S.
,
Hussein
,
M.
,
Gabbouj
,
M.
, and
Inman
,
D. J.
,
2021
, “
A Review of Vibration-based Damage Detection in Civil Structures: From Traditional Methods to Machine Learning and Deep Learning Applications
,”
Mech. Syst. Signal. Process.
,
147
(
1
), p.
107077
.
13.
Pang
,
B.
,
Nazari
,
M.
,
Sun
,
Z.
,
Li
,
J.
, and
Tang
,
G.
,
2022
, “
An Optimized Variational Mode Extraction Method for Rolling Bearing Fault Diagnosis
,”
Struct. Health. Monit.
,
21
(
2
), pp.
558
570
.
14.
Zhang
,
B.
,
Sconyers
,
C.
,
Byington
,
C.
,
Patrick
,
R.
,
Orchard
,
M. E.
, and
Vachtsevanos
,
G.
,
2010
, “
A Probabilistic Fault Detection Approach: Application to Bearing Fault Detection
,”
IEEE. Trans. Ind. Electron.
,
58
(
5
), pp.
2011
2018
.
15.
Liang
,
M.
, and
Zhou
,
K.
,
2021
, “
Probabilistic Bearing Fault Diagnosis Using Gaussian Process With Tailored Feature Extraction
,”
Int. J. Adv. Manuf. Technol.
,
119
(
1
), pp.
1
18
.
16.
Zhou
,
T.
,
Han
,
T.
, and
Droguett
,
E. L.
,
2022
, “
Towards Trustworthy Machine Fault Diagnosis: A Probabilistic Bayesian Deep Learning Framework
,”
Reliab. Eng. Syst. Saf.
,
224
(
1
), p.
108525
.
17.
Fukata
,
S.
,
Gad
,
E. H.
,
Kondou
,
T.
,
Ayabe
,
T.
, and
Tamura
,
H.
,
1985
, “
On the Radial Vibration of Ball Bearings: Computer Simulation
,”
Bull. JSME
,
28
(
239
), pp.
899
904
.
18.
Harsha
,
S.
,
2005
, “
Nonlinear Dynamic Analysis of an Unbalanced Rotor Supported by Roller Bearing
,”
Chaos, Solitons Fractals
,
26
(
1
), pp.
47
66
.
19.
Patil
,
M.
,
Mathew
,
J.
,
Rajendrakumar
,
P.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
.
20.
Feng
,
N.
,
Hahn
,
E.
, and
Randall
,
R.
, “
Using Transient Analysis Software to Simulate Vibration Signals Due to Rolling Element Bearing Defects
,”
Third Australasian Congress on Applied Mechanics
,
Sydney, Australia
,
Feb. 20
, World Scientific, pp.
689
694
.
21.
Mishra
,
C.
,
Samantaray
,
A.
, and
Chakraborty
,
G.
,
2017
, “
Ball Bearing Defect Models: A Study of Simulated and Experimental Fault Signatures
,”
J. Sound. Vib.
,
400
(
1
), pp.
86
112
.
22.
Bergstra
,
J.
, and
Bengio
,
Y.
,
2012
, “
Random Search for Hyper-Parameter Optimization.
,”
J. Mach. Learn. Res.
,
13
(
2
), pp.
0
0
.
23.
Snoek
,
J.
,
Larochelle
,
H.
, and
Adams
,
R. P.
,
2012
, “
Practical Bayesian Optimization of Machine Learning Algorithms
,”
Advances in Neural Information Processing Systems 25 (NIPS 2012)
,
Lake Tahoe, NV
,
Dec. 3
, pp.
2960
2968
.
24.
Silva
,
C. E.
,
Ortiz
,
R.
, and
Miranda-Chiquito
,
P.
,
2024
, Bearing Rotating System Dynamic Model for Fault Detection,
Mendeley Data, V1
.
25.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
KDD '16: The 22nd ACM SIGKDD International Conference on Knowledge DIscovery and Data Mining
,
San Francisco, CA
,
Aug. 13
26.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
27.
Were
,
K.
,
Bui
,
D. T.
,
Dick
,
Ø. B.
, and
Singh
,
B. R.
,
2015
, “
A Comparative Assessment of Support Vector Regression, Artificial Neural Networks, and Random Forests for Predicting and Mapping Soil Organic Carbon Stocks Across an Afromontane Landscape
,”
Ecol. Indicators
,
52
(
1
), pp.
394
403
.
28.
Ke
,
G.
,
Meng
,
Q.
,
Finley
,
T.
,
Wang
,
T.
,
Chen
,
W.
,
Ma
,
W.
,
Ye
,
Q.
, and
Liu
,
T.-Y.
,
2017
, “
LightGBM: A Highly Efficient Gradient Boosting Decision Tree
,”
31st Conference on Neural Information Processing Systems (NIPS 2017)
,
Long Beach, CA
,
Dec. 4
.
29.
Prokhorenkova
,
L.
,
Gussev
,
G.
,
Vorobev
,
A.
,
Dorogush
,
A. V.
, and
Gulin
,
A.
,
2018
, “
Advances in Neural Information Processing Systems
,”
NeurIPS 2018
,
Montreal, Canada
,
Dec. 3
.
30.
Cervantes
,
J.
,
Garcia-Lamont
,
F.
,
Rodríguez-Mazahua
,
L.
, and
Lopez
,
A.
,
2020
, “
A Comprehensive Survey on Support Vector Machine Classification: Applications, Challenges and Trends
,”
Neurocomputing
,
408
(
1
), pp.
189
215
.
31.
Bentéjac
,
C.
,
Csörgő
,
A.
, and
Martínez-Muñoz
,
G.
,
2020
, “
A Comparative Analysis of Gradient Boosting Algorithms
,”
Artif. Intell. Rev.
,
54
(
3
), pp.
1937
1967
.
32.
Sawalhi
,
N.
, and
Randall
,
R.
,
2008
, “
Simulating Gear and Bearing Interactions in the Presence of Faults: Part I. The Combined Gear Bearing Dynamic Model and the Simulation of Localised Bearing Faults
,”
Mech. Syst. Signal. Process.
,
22
(
8
), pp.
1924
1951
.
33.
General Motors Sales Corporation
,
1946
,
New Departure Division, New Departure Engineering Data: Analysis of Stresses And Deflections. Bristol, CT
.
34.
Harris
,
T.
, and
Mindel
,
M.
,
1973
, “
Rolling Element Bearing Dynamics
,”
Wear
,
23
(
3
), pp.
311
337
.
35.
Antoni
,
J.
,
2006
, “
The Spectral Kurtosis: A Useful Tool for Characterising Non-stationary Signals
,”
Mech. Syst. Signal. Process.
,
20
(
2
), pp.
282
307
.
36.
Feldman
,
M.
,
2011
, “
Hilbert Transform in Vibration Analysis
,”
Mech. Syst. Signal. Process.
,
25
(
3
), pp.
735
802
.
37.
Matsushita
,
O.
,
2019
,
Vibrations of Rotating Machinery. Applications of Analysis, Troubleshooting and Diagnosis
,
Springer
,
Tokyo
.
38.
Yang
,
Y.
,
Xia
,
W.
,
Han
,
J.
,
Song
,
Y.
,
Wang
,
J.
, and
Dai
,
Y.
,
2019
, “
Vibration Analysis for Tooth Crack Detection in a Spur Gear System With Clearance Nonlinearity
,”
Int. J. Mech. Sci.
,
157–158
(
1
), pp.
648
661
.
39.
Caesarendra
,
W.
, and
Tjahjowidodo
,
T.
,
2017
, “
A Review of Feature Extraction Methods in Vibration-Based Condition Monitoring and Its Application for Degradation Trend Estimation of Low-Speed Slew Bearing
,”
Machines
,
5
(
4
), p.
21
.
40.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Machine Learning Methods
,”
Expert. Syst. Appl.
,
38
(
3
), pp.
1876
1886
.
41.
Preece
,
S. J.
,
Goulermas
,
J. Y.
,
Kenney
,
L. P.
, and
Howard
,
D.
,
2008
, “
A Comparison of Feature Extraction Methods for the Classification of Dynamic Activities From Accelerometer Data
,”
IEEE Trans. Biomed. Eng.
,
56
(
3
), pp.
871
879
.
42.
Shwartz-Ziv
,
R.
, and
Armon
,
A.
,
2022
, “
Tabular Data: Deep Learning is Not All You Need
,”
Inf. Fusion
,
81
(
1
), pp.
84
90
.
43.
Marcot
,
B. G.
, and
Hanea
,
A. M.
,
2020
, “
What Is an Optimal Value of K in K-Fold Cross-Validation in Discrete Bayesian Network Analysis?
,”
Comput. Stat.
,
36
(
3
), pp.
2009
2031
.
44.
Bhardwaj
,
P.
,
2019
, “
Types of Sampling in Research
,”
J. Practice Cardiovasc. Sci.
,
5
(
3
), p.
157
.
45.
Akoglu
,
H.
,
2018
, “
User’s Guide to Correlation Coefficients
,”
Turk. J. Emerg. Med.
,
18
(
3
), pp.
91
93
.
46.
Schober
,
P.
,
Boer
,
C.
, and
Schwarte
,
L.
,
2018
, “
Correlation Coefficients: Appropriate Use and Interpretation
,”
Anesth. Analg.
,
126
(
5
), pp.
1763
1768
.
47.
Kendall
,
M. G.
,
1938
, “
A New Measure of Rank Correlation
,”
Biometrika
,
30
(
1/2
), pp.
81
93
.
48.
Lovric
,
M.
,
2011
,
International Encyclopedia of Statistical Science
,
Springer
,
Berlin Heidelberg
.
49.
Setyawan
,
H.
,
Nugraheni
,
A. M.
,
Haryati
,
S.
,
Qadrijati
,
I.
,
Fajariani
,
R.
,
Wardani
,
T. L.
,
Atmojo
,
T. B.
, and
Sjarifah
,
I.
,
2021
, “
The Correlation of Fire Knowledge Toward Disasters Response and Preparedness Practice Among Hospital Nurse Klaten Central Java, Indonesia
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
724
(
1
), p.
012041
.
50.
Radha
,
R.
, and
Muralidhara
,
S.
,
2016
, “
Removal of Redundant and Irrelevant Data From Training Datasets Using Speedy Feature Selection Method
,”
Int. J. Comput. Sci. Mobile Comput.
,
5
(
7
), pp.
359
364
.
51.
Shi
,
L.
,
Westerhuis
,
J. A.
,
Rosén
,
J.
,
Landberg
,
R.
, and
Brunius
,
C.
,
2018
, “
Variable Selection and Validation in Multivariate Modelling
,”
Bioinformatics
,
35
(
6
), pp.
972
980
.
52.
Huang
,
L.
,
Qin
,
J.
,
Zhou
,
Y.
,
Zhu
,
F.
,
Liu
,
L.
, and
Shao
,
L.
,
2020
, “
Normalization Techniques in Training Dnns: Methodology, Analysis and Application
,”
IEEE. Trans. Pattern. Anal. Mach. Intell.
,
45
(
8
), pp.
10173
10196
.
53.
Dulhare
,
U.
,
Ahmad
,
K.
, and
Ahmad
,
K. A.
,
2020
,
Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
54.
Yao
,
L.
,
Fang
,
Z.
,
Xiao
,
Y.
,
Hou
,
J.
, and
Fu
,
Z.
,
2021
, “
An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine
,”
Energy
,
214
(
1
), p.
118866
.
55.
Javeed
,
A.
,
Zhou
,
S.
,
Yongjian
,
L.
,
Qasim
,
I.
,
Noor
,
A.
, and
Nour
,
R.
,
2019
, “
An Intelligent Learning System Based on Random Search Algorithm and Optimized Random Forest Model for Improved Heart Disease Detection
,”
IEEE Access
,
7
(
1
), p.
180235
.
56.
Wu
,
J.
,
Chen
,
X.-Y.
,
Zhang
,
H.
,
Xiong
,
L.-D.
,
Lei
,
H.
, and
Deng
,
S.-H.
,
2019
, “
Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimizationb
,”
J. Electron. Sci. Technol.
,
17
(
1
), pp.
26
40
.
57.
Patiño
,
J.
,
Tutivén
,
C.
,
Saldarriaga
,
C.
, and
Kao
,
I.
,
2023
, “
Damping Ratio Prediction for Redundant Cartesian Impedance-Controlled Robots Using Machine Learning Techniques
,”
Mathematics
,
11
(
4
), p.
1021
.
58.
Algehyne
,
E. A.
,
Jibril
,
M. L.
,
Algehainy
,
N. A.
,
Alamri
,
O. A.
, and
Alzahrani
,
A. K.
,
2022
, “
Fuzzy Neural Network Expert System With An Improved Gini Index Random Forest-Based Feature Importance Measure Algorithm for Early Diagnosis of Breast Cancer in Saudi Arabia
,”
Big Data Cogn. Comput.
,
6
(
1
), p.
13
.
59.
Nembrini
,
S.
,
König
,
I. R.
, and
Wright
,
M. N.
,
2018
, “
The Revival of the Gini Importance?
,”
Bioinformatics
,
34
(
21
), pp.
3711
3718
.
60.
Kaneko
,
H.
,
2022
, “
Cross-Validated Permutation Feature Importance Considering Correlation Between Features
,”
Anal. Sci. Adv.
,
3
(
9–10
), pp.
278
287
. 
You do not currently have access to this content.