Abstract

To discuss the low convergence accuracy of whale optimization algorithm (WOA) and the problem of converging to local optima, we proposed using nonlinear convergence factors and introducing nonlinear inertia weights in the WOA. The modified WOA was used to optimize the trajectory of a six-degrees-of-freedom (6DOF) industrial robot. To improve the convergence accuracy and the local and global search ability of the WOA, we first replaced the convergence factor with a nonlinear convergence factor and added a nonlinear inertia weight. The algorithm was used along with a quintic polynomial equation to develop a time-optimal trajectory, for the robot, for use in practical application scenarios. Simulation experiment results showed that the duration of a complete loading–unloading process was reduced by 30% after robot motion trajectory optimization compared with that before optimization, indicating the effectiveness of the improved WOA and its suitability for robot trajectory optimization.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Biagiotti
,
L.
, and
Melchiorri
,
C.
,
2008
,
Trajectory Planning for Automatic Machines and Robots (1st. ed.)
,
Springer Publishing Company, Incorporated
.
2.
Hussain
,
S.
,
Jamwal
,
P. K.
,
Kapsalyamov
,
A.
, and
Ghayesh
,
M. H.
,
2021
, “
Numerical Framework and Design Optimization of an Intrinsically Compliant 3-DOF Parallel Robot
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021008
.
3.
Gasparetto
,
A.
, and
Zanotto
,
V.
,
2010
, “
Optimal Trajectory Planning for Industrial Robots
,”
Adv. Eng. Softw.
,
41
(
4
), pp.
548
556
.
4.
Xidias
,
E. K.
,
2018
, “
Time-Optimal Trajectory Planning for Hyper-Redundant Manipulators in 3D Workspaces
,”
Rob. Comput. Integr. Manuf.
,
50
, pp.
286
298
.
5.
Malhan
,
R.
,
Jomy Joseph
,
R.
,
Bhatt
,
P. M.
,
Shah
,
B.
, and
Gupta
,
S. K.
,
2022
, “
Algorithms for Improving Speed and Accuracy of Automated Three-Dimensional Reconstruction With a Depth Camera Mounted on An Industrial Robot
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031012
.
6.
Kvrgic
,
V.
, and
Vidakovic
,
J.
,
2020
, “
Efficient Method for Robot Forward Dynamics Computation
,”
Mech. Mach. Theory
,
145
, p.
103680
.
7.
Wang
,
Z.
,
Li
,
Y.
,
Sun
,
P.
,
Luo
,
Y.
,
Chen
,
B.
, and
Zhu
,
W.
,
2021
, “
A Multi-Objective Approach for the Trajectory Planning of a 7-dof Serial-Parallel Hybrid Humanoid Arm
,”
Mech. Mach. Theory
,
165
, p.
104423
.
8.
Soori
,
M.
,
Arezoo
,
B.
, and
Dastres
,
R.
,
2023
, “
Optimization of Energy Consumption in Industrial Robots, A Review
,”
Cogn. Rob.
,
3
, pp.
142
157
.
9.
Wang
,
T.
,
Xin
,
Z.
,
Miao
,
H.
,
Zhang
,
H.
,
Chen
,
Z.
, and
Du
,
Y.
,
2020
, “
Optimal Trajectory Planning of Grinding Robot Based on Improved Whale Optimization Algorithm
,”
Math. Prob. Eng.
,
2020
, pp.
1
8
.
10.
Zhang
,
L.
,
Wang
,
J.
,
Chen
,
J.
,
Chen
,
K.
,
Lin
,
B.
, and
Xu
,
F.
,
2019
, “
Dynamic Modeling for a 6-DOF Robot Manipulator Based on a Centrosymmetric Static Friction Model and Whale Genetic Optimization Algorithm
,”
Adv. Eng. Softw
,
135
, p.
102684
. (Sep 2019).
11.
Zhang
,
H.
,
2020
, “
Transient Performance of the Particle Swarm Optimization Algorithm From System Dynamics Point of View
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
041008
.
12.
Sadiq
,
A. T.
,
Raheem
,
F. A.
, and
Abbas
,
N. A. F.
,
2019
, “
Robot Arm Trajectory Planning Optimization Based on Integration of Particle Swarm Optimization and A* Algorithm
,”
J. Comput. Theor. Nanosci.
,
16
, pp.
1046
1055
.
13.
Petrović
,
M.
,
Miljković
,
Z.
, and
Jokić
,
A.
,
2019
, “
A Novel Methodology for Optimal Single Mobile Robot Scheduling Using Whale Optimization Algorithm
,”
Appl. Soft Comput.
,
81
, p.
105520
.
14.
Chen
,
H.
,
Yang
,
C.
,
Heidari
,
A. A.
, and
Zhao
,
X.
,
2020
, “
An Efficient Double Adaptive Random Spare Reinforced Whale Optimization Algorithm
,”
Expert Syst. Appl.
,
154
, p.
113018
.
15.
Kumar
,
A.
,
Banga
,
V. K.
,
Kumar
,
D.
, and
Yingthawornsuk
,
T.
,
2019
, “
Kinematics Solution Using Metaheuristic Algorithms
,”
Proceedings of the 2019 15th International Conference on Signal-Image Technology &Internet-Based Systems (SITIS)
,
Sorrento, Italy
,
Nov. 26–29
,
IEEE
, pp.
505
510
.
16.
Choubey
,
C.
, and
Ohri
,
J.
,
2021
, “
Optimal Trajectory Generation for a 6-DOF Parallel Manipulator Using Grey Wolf Optimization Algorithm
,”
Robotica
,
39
(
3
), pp.
411
427
.
17.
Choi
,
T.
,
Park
,
C.
,
Do
,
H.
,
Park
,
D.
,
Kyung
,
J.
, and
Chung
,
G.
,
2013
, “
Trajectory Correction Based on Shape Peculiarity in Direct Teaching Manipulator
,”
Int. J. Control Autom. Syst.
,
11
(
5
), pp.
1009
1017
.
18.
Yin
,
F.
,
Liang
,
Q.
,
Cheng
,
X.
, and
Tao
,
Z.
,
2017
, “
Research on Mechanical Arm Joint Space Trajectory Planning Algorithm Based on Optimal Time
,”
Mach. Des. Res.
,
33
, pp.
12
15
.
19.
Mirjalili
,
S.
, and
Lewis
,
A.
,
2016
, “
The Whale Optimization Algorithm
,”
Adv. Eng. Softw.
,
95
, pp.
51
67
.
20.
Mirjalili
,
S.
, and
Gandomi
,
A. H.
,
2017
, “
Chaotic Gravitational Constants for the Gravitational Search Algorithm
,”
Appl. Soft Comput. J.
,
53
, pp.
403
419
.
21.
Fang
,
Y.
,
Hu
,
J.
,
Liu
,
W.
,
Shao
,
Q.
,
Qi
,
J.
, and
Peng
,
Y.
,
2019
, “
Smooth and Time-Optimal S-Curve Trajectory Planning for Automated Robots and Machines
,”
Mech. Mach. Theory
,
137
, pp.
127
153
.
22.
Ding
,
H.
,
Wu
,
Z.
, and
Zhao
,
L.
,
2020
, “
Whale Optimization Algorithm Based on Nonlinear Convergence Factor and Chaotic Inertial Weight
,”
Concurr. Computat. Pract. Exper.
,
32
(
24
), p.
e5949
.
23.
Ebrahimgol
,
H.
,
Aghaie
,
M.
,
Zolfaghari
,
A.
, and
Naserbegi
,
A.
,
2020
, “
A Novel Approach in Exergy Optimization of a WWER1000 Nuclear Power Plant Using Whale Optimization Algorithm
,”
Ann. Nucl. Energy
,
145
, p.
107540
.
24.
Yangzhen
,
J.
,
Li
,
H.
,
Lan
,
L.
,
Pei
,
L.
,
Xubin
,
L.
, and
Shuang
,
L.
,
2021
, “
Solution of Inverse Kinematics for 6R Robots Based on Combinatorial Optimization Algorithm
,”
China Mech. Eng.
,
32
(
10
), pp.
1222
1232
.
25.
Ma
,
J. W.
,
Gao
,
S.
,
Yan
,
H. T.
,
Lv
,
Q.
, et al
,
2021
, “
A New Approach to Time-Optimal Trajectory Planning with Torque and Jerk Limits for Robot
,”
Rob. Auton. Syst.
,
140
, pp.
1
10
.
26.
Kirecci
,
A.
, and
Gilmartin
,
M. J.
,
1994
, “
Improved Trajectory Planning Using Arbitrary Power Polynomials
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
208
(
1
), pp.
3
13
.
27.
Zhao
,
Y.
,
Mei
,
J.
, and
Niu
,
W.
,
2021
, “
Vibration Error-Based Trajectory Planning of a 5-DOF Hybrid Machine Tool
,”
Rob. Comput. Integr. Manuf.
,
69
, p.
102095
.
28.
Chen
,
G.
,
Wei
,
N.
,
Yan
,
L.
,
Lu
,
H.
, and
Li
,
J.
,
2023
, “
Time-Optimal Trajectory Planning Based on Event-Trigger and Conditional Proportional Control
,”
PLoS One
,
18
(
1
), p.
e0273640
.
29.
Krämer
,
M.
,
Muster
,
F. I.
,
Rösmann
,
C.
, and
Bertram
,
T.
,
2021
, “
An Optimization-Based Approach for Elasticity-Aware Trajectory Planning of Link-Elastic Manipulators
,”
Mechatronics
,
75
, p.
102523
.
You do not currently have access to this content.