Abstract

Additive manufacturing (AM) is gaining prominence across numerous fields, which involves the generation of extensive data at each process stage. A relational database is a useful tool to store such AM data and streamline data retrieval. Users can specify the value of one AM variable or attribute and retrieve the corresponding record values of another attribute. This establishes the correlations between AM variables, and supports applications such as process planning. Nonetheless, such an operation is a “hard” query, which lacks reasoning capabilities and fails to provide useful information when required records are missing. It is urgent to develop a more powerful AM database to handle AM data better, which should support “soft” queries, be scalable to high-dimensional data, and maintain flexible query functionality among multiple attributes. In this paper, we construct an AM database with probabilistic modeling and transformation-invariant feature learning, which is termed as a probabilistic AM database (PAMDB). The PAMDB allows the selection of any AM attribute as a query attribute, or even multiple attributes as query attributes, to retrieve the values of other attributes, which is adapted to unseen, high-dimensional, and multimodal AM data. Two case studies were conducted for laser powder bed fusion (LPBF) and vat photopolymerization (VP). Compared with existing methods, experimental results underscore the efficacy of the PAMDBs, both qualitatively and quantitatively, in tasks that includes melt pool size prediction and scan parameter estimation in LPBF, and defect detection for the resin deposition process in VP.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Fang
,
Q.
,
Xiong
,
G.
,
Zhou
,
M.
,
Tamir
,
T. S.
,
Yan
,
C.-B.
,
Wu
,
H.
,
Shen
,
Z.
, and
Wang
,
F.-Y.
,
2024
, “
Process Monitoring, Diagnosis and Control of Additive Manufacturing
,”
IEEE Trans. Autom. Sci. Eng.
,
21
(
1
), pp.
1041
1067
.
2.
Feng
,
S. C.
,
Moges
,
T.
,
Park
,
H.
,
Yakout
,
M.
,
Jones
,
A. T.
,
Ko
,
H.
, and
Witherell
,
P.
,
2023
, “
Functional Requirements of Software Tools for Laser-Based Powder Bed Fusion Additive Manufacturing for Metals
,”
J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031005
.
3.
Tamir
,
T. S.
,
Xiong
,
G.
,
Fang
,
Q.
,
Yang
,
Y.
,
Shen
,
Z.
,
Zhou
,
M.
, and
Jiang
,
J.
,
2023
, “
Machine-Learning-Based Monitoring and Optimization of Processing Parameters in 3d Printing
,”
Int. J. Comput. Integr. Manuf.
,
36
(
9
), pp.
1362
1378
.
4.
Shen
,
Z.
,
Dong
,
X.
,
Fang
,
Q.
,
Xiong
,
G.
,
Ge
,
C.-C.
, and
Wang
,
F.-Y.
,
2022
, “
Parallel Additive Manufacturing Systems
,”
IEEE J. Radio Freq. Identif.
,
6
, pp.
758
763
.
5.
Lee
,
S.
,
Peng
,
J.
,
Shin
,
D.
, and
Choi
,
Y. S.
,
2019
, “
Data Analytics Approach for Melt-Pool Geometries in Metal Additive Manufacturing
,”
Sci. Technol. Adv. Mater.
,
20
(
1
), pp.
972
978
.
6.
Kamath
,
C.
,
2016
, “
Data Mining and Statistical Inference in Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5
), pp.
1659
1677
.
7.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2018
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316l Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9
), pp.
3591
3603
.
8.
Nath
,
P.
, and
Mahadevan
,
S.
,
2023
, “
Probabilistic Predictive Control of Porosity in Laser Powder Bed Fusion
,”
J. Intell. Manuf.
,
34
, pp.
1085
1103
.
9.
Ren
,
Y.
, and
Wang
,
Q.
,
2022
, “
Gaussian-Process Based Modeling and Optimal Control of Melt-Pool Geometry in Laser Powder Bed Fusion
,”
J. Intell. Manuf.
,
33
, pp.
2239
2256
.
10.
Hamedi
,
A.
,
2019
, “
Bayesian Networks in Additive Manufacturing and Reliability Engineering
,” Master’s thesis, Tampere University, Tampere.
11.
Hertlein
,
N.
,
Deshpande
,
S.
,
Venugopal
,
V.
,
Kumar
,
M.
, and
Anand
,
S.
,
2020
, “
Prediction of Selective Laser Melting Part Quality Using Hybrid Bayesian Network
,”
Addit. Manuf.
,
32
, p.
101089
.
12.
Chen
,
R.
,
Lu
,
Y.
,
Witherell
,
P.
,
Simpson
,
T. W.
,
Kumara
,
S.
, and
Yang
,
H.
,
2021
, “
Ontology-Driven Learning of Bayesian Network for Causal Inference and Quality Assurance in Additive Manufacturing
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
6032
6038
.
13.
Chen
,
Y.
,
Lv
,
Y.
, and
Wang
,
F.-Y.
,
2020
, “
Traffic Flow Imputation Using Parallel Data and Generative Adversarial Networks
,”
IEEE Trans. Intell. Transp. Syst.
,
21
(
4
), pp.
1624
1630
.
14.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2019
, “
From Scan Strategy to Melt Pool Prediction: A Neighboring-Effect Modeling Method
,”
J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
051001
.
15.
Yeung
,
H.
,
Yang
,
Z.
, and
Yan
,
L.
,
2020
, “
A Meltpool Prediction Based Scan Strategy for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
35
, p.
101383
.
16.
Moges
,
T.
,
Yang
,
Z.
,
Jones
,
K.
,
Feng
,
S.
,
Witherell
,
P.
, and
Lu
,
Y.
,
2021
, “
Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing
,”
J. Comput. Inf. Sci. Eng.
,
21
(
5
), p.
050902
.
17.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Kirshnamurty
,
S.
,
2020
, “
3D Build Melt Pool Predictive Modeling for Powder Bed Fusion Additive Manufacturing
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 83983
,
St. Louis, MO
,
Aug. 18–21
,
American Society of Mechanical Engineers
, p.
V009T09A046
.
18.
Baturynska
,
I.
,
2019
, “
Application of Machine Learning Techniques to Predict the Mechanical Properties of Polyamide 2200 (PA12) in Additive Manufacturing
,”
Appl. Sci.
,
9
(
6
), p.
1060
.
19.
Jayasinghe
,
S.
,
Paoletti
,
P.
,
Sutcliffe
,
C.
,
Dardis
,
J.
,
Jones
,
N.
, and
Green
,
P. L.
,
2022
, “
Automatic Quality Assessments of Laser Powder Bed Fusion Builds From Photodiode Sensor Measurements
,”
Prog. Addit. Manuf.
,
7
, pp.
143
160
.
20.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Rajendran
,
P.
,
Shah
,
B. C.
,
Thakar
,
S.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2021
, “
Image-Based Surface Defect Detection Using Deep Learning: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
040801
.
21.
Fang
,
Q.
,
Xiong
,
G.
,
Shang
,
X.
,
Liu
,
S.
,
Hu
,
B.
, and
Shen
,
Z.
,
2020
, “
An Enhanced Fault Diagnosis Method With Uncertainty Quantification Using Bayesian Convolutional Neural Network
,”
2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)
,
Hong Kong, China
,
Aug. 20–21
,
IEEE
, pp.
588
593
.
22.
Wang
,
Y.
,
Blache
,
R.
,
Zheng
,
P.
, and
Xu
,
X.
,
2018
, “
A Knowledge Management System to Support Design for Additive Manufacturing Using Bayesian Networks
,”
J. Mech. Des.
,
140
(
5
), p.
051701
.
23.
Tan
,
Y.
,
Jin
,
B.
,
Nettekoven
,
A.
,
Chen
,
Y.
,
Yue
,
Y.
,
Topcu
,
U.
, and
Sangiovanni-Vincentelli
,
A.
,
2019
, “
An Encoder–Decoder Based Approach for Anomaly Detection With Application in Additive Manufacturing
,”
2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA)
,
Boca Raton, FL
,
Dec. 16–19
,
IEEE
, pp.
1008
1015
.
24.
Fathizadan
,
S.
,
Ju
,
F.
, and
Lu
,
Y.
,
2021
, “
Deep Representation Learning for Process Variation Management in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
42
, p.
101961
.
25.
Kim
,
J.
,
Yang
,
Z.
,
Ko
,
H.
,
Cho
,
H.
, and
Lu
,
Y.
,
2023
, “
Deep Learning-Based Data Registration of Melt-Pool-Monitoring Images for Laser Powder Bed Fusion Additive Manufacturing
,”
J. Manuf. Syst.
,
68
, pp.
117
129
.
26.
Ren
,
W.
,
Wen
,
G.
,
Zhang
,
Z.
, and
Mazumder
,
J.
,
2022
, “
Quality Monitoring in Additive Manufacturing Using Emission Spectroscopy and Unsupervised Deep Learning
,”
Mater. Manuf. Process.
,
37
(
11
), pp.
1339
1346
.
27.
Shi
,
Z.
,
Mandal
,
S.
,
Harimkar
,
S.
, and
Liu
,
C.
,
2022
, “
Hybrid Data-Driven Feature Extraction-Enabled Surface Modeling for Metal Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
121
(
7–8
), pp.
4643
4662
.
28.
Imani
,
F.
, and
Chen
,
R.
,
2022
, “
Latent Representation and Characterization of Scanning Strategy on Laser Powder Bed Fusion Additive Manufacturing
,”
ASME International Mechanical Engineering Congress and Exposition, Vol. 86649
,
Columbus, OH
,
Oct. 30–Nov. 3
,
American Society of Mechanical Engineers
, p.
V02BT02A009
.
29.
Laptev
,
D.
,
Savinov
,
N.
,
Buhmann
,
J. M.
, and
Pollefeys
,
M.
,
2016
, “
Ti-pooling: Transformation-Invariant Pooling for Feature Learning in Convolutional Neural Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 26–July 1
, pp.
289
297
.
30.
Cheng
,
Z.
,
Zhu
,
E.
,
Wang
,
S.
,
Zhang
,
P.
, and
Li
,
W.
,
2021
, “
Unsupervised Outlier Detection Via Transformation Invariant Autoencoder
,”
IEEE Access
,
9
, pp.
43991
44002
.
31.
Matsuo
,
T.
,
Fukuhara
,
H.
, and
Shimada
,
N.
,
2017
, “
Transform Invariant Auto-Encoder
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, Canada
,
Sept. 24–28
,
IEEE
, pp.
2359
2364
.
32.
Bishop
,
C. M.
, and
Nasrabadi
,
N. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
33.
Lane
,
B.
, and
Yeung
,
H.
,
2019
, “
Process Monitoring Dataset From the Additive Manufacturing Metrology Testbed (AMMT): Three-Dimensional Scan Strategies
,”
J. Res. Natl. Inst. Stand. Technol.
,
124
, pp.
1
14
.
34.
Craeghs
,
T.
,
Clijsters
,
S.
,
Yasa
,
E.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J. P.
,
2011
, “
Determination of Geometrical Factors in Layerwise Laser Melting Using Optical Process Monitoring
,”
Opt. Lasers Eng.
,
49
(
12
), pp.
1440
1446
.
35.
Scime
,
L.
, and
Beuth
,
J.
,
2019
, “
Using Machine Learning to Identify In-Situ Melt Pool Signatures Indicative of Flaw Formation in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
25
, pp.
151
165
.
36.
Ioffe
,
S.
, and
Szegedy
,
C.
,
2015
, “
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
,”
International Conference on Machine Learning
,
Lille, France
,
July 6–11
,
PMLR
, pp.
448
456
.
37.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
International Conference on Learning Representations
,
San Diego, CA
,
May 7–9
, pp.
1
15
.
38.
Simchi
,
A.
,
2006
, “
Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features
,”
Mater. Sci. Eng. A
,
428
(
1
), pp.
148
158
.
39.
Fang
,
Q.
,
Tan
,
Z.
,
Li
,
H.
,
Shen
,
S.
,
Liu
,
S.
,
Song
,
C.
,
Zhou
,
X.
,
Yang
,
Y.
, and
Wen
,
S.
,
2021
, “
In-Situ Capture of Melt Pool Signature in Selective Laser Melting Using U-Net-Based Convolutional Neural Network
,”
J. Manuf. Process.
,
68
, pp.
347
355
.
40.
Nandhakumar
,
R.
, and
Venkatesan
,
K.
,
2023
, “
A Process Parameters Review on Selective Laser Melting-Based Additive Manufacturing of Single and Multi-material: Microstructure, Physical Properties, Tribological, and Surface Roughness
,”
Mater. Today Commun.
,
35
, p.
105538
.
41.
Atienza
,
D.
,
Bielza
,
C.
, and
Larrañaga
,
P.
,
2022
, “
PyBNesian: An Extensible Python Package for Bayesian Networks
,”
Neurocomputing
,
504
, pp.
204
209
.
42.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 26–July 1
, pp.
770
778
.
You do not currently have access to this content.