Abstract

Self-organizing systems can perform complex tasks in unpredictable situations with adaptability. Previous work has introduced a multiagent reinforcement learning-based model as a design approach to solving the rule generation problem with complex tasks. A deep multiagent reinforcement learning algorithm was devised to train self-organizing agents for knowledge acquisition of the task field and social rules. The results showed that there is an optimal number of agents that achieve good learning stability and system performance. However, finding such a number is nontrivial due to the dynamic task constraints and unavailability of agent knowledge before training. Although extensive training can eventually reveal the optimal number, it requires training simulations of all agent numbers under consideration, which can be computationally expensive and time consuming. Thus, there remains the issue of how to predict such an optimal team size for self-organizing systems with minimal training experiments. In this article, we proposed a measurement of the complexity of the self-organizing system called effective entropy, which considers the task constraints. A systematic approach, including several key concepts and steps, is proposed to calculate the effective entropy for given task environments, which is then illustrated and tested in a box-pushing case study. The results show that our proposed method and complexity measurement can accurately predict the optimal number of agents in self-organizing systems, and training simulations can be reduced by a factor of 10.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Reynolds
,
C. W.
,
1987
, “
Flocks, Herds and Schools: A Distributed Behavioral Model
,”
ACM SIGGRAPH Computer Graphics
,
21
(
4
), pp.
25
34
.
2.
Ashby
,
W. R.
,
1991
, “
Requisite Variety and Its Implications for the Control of Complex Systems
,”
Facets Syst. Sci.
,
7
, pp.
405
417
.
3.
Chiang
,
W.
, and
Jin
,
Y.
,
2012
, “
Design of Cellular Self-Organizing Systems
,”
Intl. Design Engineering Technical Conferences
,
Chicago, IL
,
Aug. 12–15
, Vol. 45028, pp.
511
521
.
4.
Humann
,
J.
,
Khani
,
N.
, and
Jin
,
Y.
,
2014
, “
Evolutionary Computational Synthesis of Self-Organizing Systems
,”
AI EDAM
,
28
(
3
), pp.
259
275
.
5.
Khani
,
N.
,
Humann
,
J.
, and
Jin
,
Y.
,
2016
, “
Effect of Social Structuring in Self-Organizing Systems
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041101
.
6.
Khani
,
N.
, and
Jin
,
Y.
,
2015
, “Dynamic Structuring in Cellular Self-Organizing Systems,”
Design Computing and Cognition'14
,
J. S.
Gero
and
S.
Hanna
, eds.,
Springer
,
Cham, Switzerland
, pp.
3
20
.
7.
Ji
,
H.
, and
Jin
,
Y.
,
2018
, “
Modeling Trust in Self-Organizing Systems With Heterogeneity
,”
ASME 2018 Intl. Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
8.
Ji
,
H.
, and
Jin
,
Y.
,
2021
, “
Evaluating the Learning and Performance Characteristics of Self-Organizing Systems With Different Task Features
,”
AI EDAM
,
35
(
4
), pp.
404
422
.
9.
Ji
,
H.
, and
Jin
,
Y.
,
2022
, “
Knowledge Acquisition of Self-Organizing Systems With Deep Multiagent Reinforcement Learning
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021010
.
10.
Dasgupta
,
P.
,
2008
, “
A Multiagent Swarming System for Distributed Automatic Target Recognition Using Unmanned Aerial Vehicles
,”
IEEE Trans. Syst. Man Cybern. Part A Syst. Humans
,
38
(
3
), pp.
549
563
.
11.
Ruini
,
F.
, and
Cangelosi
,
A.
,
2009
, “
Extending the Evolutionary Robotics Approach to Flying Machines: An Application to MAV Teams
,”
Neural Netw.
,
22
(
5–6
), pp.
812
821
.
12.
Lamont
,
G. B.
,
Slear
,
J. N.
, and
Melendez
,
K.
,
2007
, “
UAV Swarm Mission Planning and Routing Using Multi-Objective Evolutionary Algorithms
,”
2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making
,
Honolulu, HI
,
Apr. 1–5
.
13.
Wei
,
Y.
,
Madey
,
G. R.
, and
Blake
,
M. B.
,
2013
, “
Agent-Based Simulation for UAV Swarm Mission Planning and Execution
,”
Proceedings of the Agent-Directed Simulation Symposium
,
San Diego, CA
,
Apr. 7–10
, pp.
1
8
.
14.
Chen
,
C.
, and
Jin
,
Y.
,
2011
, “
A Behavior Based Approach to Cellular Self-Organizing Systems Design
,”
International Design Engineering Technical Conferences
,
Washington, DC
,
Aug. 28–31
, Vol. 54860, pp.
95
107
.
15.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
,
MIT Press
,
Cambridge, MA
.
16.
Busoniu
,
L.
,
Babuska
,
R.
, and
De Schutter
,
B.
,
2008
, “
A Comprehensive Survey of Multiagent Reinforcement Learning
,”
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
,
38
(
2
), pp.
156
172
.
17.
Tampuu
,
A.
,
Matiisen
,
T.
,
Kodelja
,
D.
,
Kuzovkin
,
I.
,
Korjus
,
K.
,
Aru
,
J.
, and
Vicente
,
R.
,
2017
, “
Multiagent Cooperation and Competition With Deep Reinforcement Learning
,”
PLoS One
,
12
(
4
), p.
e0172395
.
18.
Tan
,
M.
,
1993
, “
Multiagent Reinforcement Learning: Independent vs. Cooperative Agents
,”
Proceedings of the Tenth International Conference on Machine Learning
,
Amherst, MA
,
July 27–29
, pp.
330
337
.
19.
Watkins
,
C. J. C. H.
,
1989
, “
Learning From Delayed Rewards
,”
Ph.D. Dissertation
,
Cambridge University
,
Cambridge, UK
.
20.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Rusu
,
A. A.
,
Veness
,
J.
,
Bellemare
,
M. G.
,
Hassabis
,
D.
, et al
,
2015
, “
Human-Level Control Through Deep Reinforcement Learning
,”
Nature
,
518
(
7540
), pp.
529
533
.
21.
Foerster
,
J.
,
Farquhar
,
G.
,
Afouras
,
T.
,
Nardelli
,
N.
, and
Whiteson
,
S.
,
2018
, “
Counterfactual Multiagent Policy Gradients
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
Apr.
, Vol.
32
, No. 1.
22.
Foerster
,
J.
,
Nardelli
,
N.
,
Farquhar
,
G.
,
Afouras
,
T.
,
Torr
,
P. H.
,
Kohli
,
P.
, and
Whiteson
,
S.
,
2017
, “
Stabilising Experience Replay for Deep Multiagent Reinforcement Learning
,”
Intl. Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
, PMLR, pp.
1146
1155
.
23.
Hausknecht
,
M.
, and
Stone
,
P.
,
2015
, “
Deep Recurrent q-Learning for Partially Observable Mdps
,”
2015 AAAI Fall Symposium
,
Arlington, VA
,
Nov. 12–14
.
24.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
25.
Chung
,
J.
,
Gulcehre
,
C.
,
Cho
,
K.
, and
Bengio
,
Y.
,
2014
, “
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
,” arXiv preprint arXiv:1412.3555.
26.
Lowe
,
R.
,
Wu
,
Y.
,
Tamar
,
A.
,
Harb
,
J.
,
Abbeel
,
P.
, and
Mordatch
,
I.
,
2017
, “
Multiagent Actor-Critic for Mixed Cooperative-Competitive Environments
,”
31st Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
.
27.
Brown
,
N.
, and
Sandholm
,
T.
,
2019
, “
Superhuman AI for Multiplayer Poker
,”
Science
,
365
(
6456
), pp.
885
890
.
28.
Baker
,
B.
,
Kanitscheider
,
I.
,
Markov
,
T.
,
Wu
,
Y.
,
Powell
,
G.
,
McGrew
,
B.
, and
Mordatch
,
I.
,
2019
, “
Emergent Tool Use From Multiagent Autocurricula
,”
The 8th International Conference on Learning Representations
,
Virtual Conference
,
Apr. 26– May 1
.
29.
Wu
,
S. A.
,
Wang
,
R. E.
,
Evans
,
J. A.
,
Tenenbaum
,
J. B.
,
Parkes
,
D. C.
, and
Kleiman-Weiner
,
M.
,
2021
, “
Too Many Cooks: Bayesian Inference for Coordinating Multiagent Collaboration
,”
Top. Cogn. Sci.
,
13
(
2
), pp.
414
432
.
30.
Bar-Yam
,
Y.
,
2002
,
General Features of Complex Systems. Encyclopedia of Life Support Systems (EOLSS)
,
UNESCO, EOLSS Publishers
,
Oxford, UK
.
31.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2017
, “
Optimizing Design Teams Based on Problem Properties: Computational Team Simulations and an Applied Empirical Test
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041101
.
32.
Hulse
,
D.
,
Tumer
,
K.
,
Hoyle
,
C.
, and
Tumer
,
I.
,
2019
, “
Modeling Multidisciplinary Design With Multiagent Learning
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
33
(
1
), pp.
85
99
.
33.
Chen
,
L.
, and
Li
,
S.
,
2005
, “
Analysis of Decomposability and Complexity for Design Problems in the Context of Decomposition
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
545
557
.
34.
Joshua
,
D.
,
Summers
,
J. D.
, and
Shah
,
J.
,
2010
, “
Mechanical Engineering Design Complexity Metrics: Size, Coupling, and Solvability
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021004
.
35.
Allaire
,
D.
,
He
,
Q.
,
Deyst
,
J.
, and
Willcox
,
K.
,
2012
, “
An Information-Theoretic Metric of System Complexity With Application to Engineering System Design
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100906
.
36.
Chen
,
W.
,
Fuge
,
M.
, and
Chazan
,
J.
, “
Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051102
.
37.
Simon
,
H. A.
,
1962
, “
The Architecture of Complexity
,”
Proc. Am. Philos. Soc.
,
106
(
6
), pp.
467
482
.
38.
Bashir
,
H. A.
, and
Thomson
,
V.
,
1999
, “
Estimating Design Complexity
,”
J. Eng. Des.
,
10
(
3
), pp.
247
257
.
39.
Sheard
,
S. A.
, and
Mostashari
,
A.
,
2010
, “
A Complexity Typology for Systems Engineering
,”
INCOSE International Symposium
,
Chicago, IL
,
July 11–15
, Vol. 20, No.1, pp.
933
945
.
40.
Summers
,
J. D.
, and
Shah
,
J. J.
,
2010
, “
Mechanical Engineering Design Complexity Metrics: Size, Coupling, and Solvability
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021004
.
41.
Lloyd
,
S.
,
2001
, “
Measures of Complexity: A Nonexhaustive List
,”
IEEE Control Syst. Mag.
,
21
(
4
), pp.
7
8
.
42.
Sheard
,
S.
,
Cook
,
S.
,
Honour
,
E.
,
Hybertson
,
D.
,
Krupa
,
J.
,
McEver
,
J.
, and
White
,
B.
,
2015
,
A Complexity Primer for Systems Engineers
,
INCOSE Publications
,
San Diego, CA
, pp.
1
17
.
43.
Moses
,
J.
,
2004
, “
Foundational Issues in Engineering Systems: A Framing Paper
,”
Engineering Systems Symposium
,
Cambridge, MA
,
Mar. 29–31
.
44.
Hennig
,
A.
,
Topcu
,
T. G.
, and
Szajnfarber
,
Z.
,
2022
, “
So You Think Your System Is Complex?: Why and How Existing Complexity Measures Rarely Agree
,”
ASME J. Mech. Des.
,
144
(
4
), p.
041401
.
45.
Lindemann
,
U.
,
Maurer
,
M.
, and
Braun
,
T.
,
2008
,
Structural Complexity Management: An Approach for the Field of Product Design
,
Springer Science & Business Media
,
New York
.
46.
Kossiakoff
,
A.
,
Sweet
,
W. N.
,
Seymour
,
S. J.
, and
Biemer
,
S. M.
,
2011
,
Systems Engineering Principles and Practice
, Vol.
83
,
John Wiley & Sons
,
Hoboken, NJ
.
47.
De Weck
,
O. L.
,
Roos
,
D.
, and
Magee
,
C. L.
,
2011
,
Engineering Systems: Meeting Human Needs in a Complex Technological World
,
MIT Press
,
Cambridge, MA
.
48.
Baldwin
,
C. Y.
,
Clark
,
K. B.
, and
Clark
,
K. B.
,
2000
,
Design Rules: The Power of Modularity
, Vol.
1
,
MIT Press
,
Cambridge, MA
.
49.
Suh
,
N. P.
,
2005
, “
Complexity in Engineering
,”
CIRP Ann.
,
54
(
2
), pp.
46
63
.
50.
Rechtin
,
E.
, and
Maier
,
M. W.
,
2010
,
The Art of Systems Architecting
,
CRC Press
,
Boca Raton, FL
.
51.
Cameron
,
B.
,
Crawley
,
E.
, and
Selva
,
D.
,
2016
,
Systems Architecture. Strategy and Product Development for Complex Systems
,
Pearson Education
,
Upper Saddle River, NJ
.
52.
Min
,
G.
,
Suh
,
E. S.
, and
Hölttä-Otto
,
K.
,
2016
, “
System Architecture, Level of Decomposition, and Structural Complexity: Analysis and Observations
,”
ASME J. Mech. Des.
,
138
(
2
), p.
021102
.
53.
McCabe
,
T. J.
,
1976
, “
A Complexity Measure
,”
IEEE Trans. Software Eng.
,
SE2
(
4
), pp.
308
320
.
54.
Halstead
,
M. H.
,
1977
,
Elements of Software Science (Operating and Programming Systems Series)
,
Elsevier Science Inc
.
55.
Hölttä
,
K. M.
, and
Otto
,
K. N.
,
2005
, “
Incorporating Design Effort Complexity Measures in Product Architectural Design and Assessment
,”
Des. Stud.
,
26
(
5
), pp.
463
485
.
56.
Sinha
,
K.
, and
de Weck
,
O. L.
,
2016
, “
Empirical Validation of Structural Complexity Metric and Complexity Management for Engineering Systems
,”
Syst. Eng.
,
19
(
3
), pp.
193
206
.
57.
Sinha
,
K.
,
2014
, “
Structural Complexity and Its Implications for Design of Cyber-Physical Systems
,” Ph.D. Dissertation,
MIT
,
Cambridge, MA
.
58.
Broniatowski
,
D. A.
, and
Moses
,
J.
,
2016
, “
Measuring Flexibility, Descriptive Complexity, and Rework Potential in Generic System Architectures
,”
Syst. Eng.
,
19
(
3
), pp.
207
221
.
59.
Prokopenko
,
M.
,
Boschetti
,
F.
, and
Ryan
,
A. J.
,
2009
, “
An Information-Theoretic Primer on Complexity, Self-Organization, and Emergence
,”
Complexity
,
15
(
1
), pp.
11
28
.
60.
Ashby
,
W. R.
,
1961
,
An Introduction to Cybernetics
,
Chapman & Hall Ltd
.
61.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
(
4
), pp.
620
630
.
62.
Humann
,
J.
,
Khani
,
N.
, and
Jin
,
Y.
,
2016
, “
Adaptability Tradeoffs in the Design of Self-Organizing Systems
,”
Intl. Design Engineering Technical Conferences
,
Charlotte, NC
,
Aug. 21–24
.
63.
Jones
,
C.
, and
Mataric
,
M. J.
,
2003
, “
Adaptive Division of Labor in Large-Scale Minimalist Multi-Robot Systems
,”
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Las Vegas, NV
,
Oct. 27–31
.
64.
Groß
,
R.
,
Bonani
,
M.
,
Mondada
,
F.
, and
Dorigo
,
M.
,
2006
, “
Autonomous Self-Assembly in Swarm-Bots
,”
IEEE Trans. Rob.
,
22
(
6
), pp.
1115
1130
.
You do not currently have access to this content.