Abstract

Distinct from the conventional manufacturing paradigm, the functioning of the Social Manufacturing (SocialM) model relies on a vast and dispersed array of social manufacturing resources. SocialM communities/groups emerge autonomously through business interactions, resource self-organization, and production information sharing, all driven by product orders within the SocialM system. This necessitates a more open, distributed, and autonomous software model to facilitate the allocation and operation of social manufacturing resources in support of the SocialM model. Consequently, this paper introduces a novel software development model designed specifically for SocialM. This proposed model employs business interaction software as the system's primary control portal, enabling efficient management of resources and users based on the social manufacturing communities/groups. Additionally, it facilitates the administration and oversight of numerous applications by utilizing an industrial Appstore. Moreover, the paper delves into the technological roadmap for realizing the essential technologies of the software model by integrating multi-agent and Message Queuing Telemetry Transport (MQTT) technologies. A 3D printing task simulation case was employed to demonstrate the model's working principle, which served to confirm the reliability and scalability of the SocialM software, as well as the feasibility of the SocialM theory.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Jiang
,
P.
,
Leng
,
J.
,
Ding
,
K.
,
Gu
,
P.
, and
Koren
,
Y.
,
2016
, “
Social Manufacturing as a Sustainable Paradigm for Mass Individualization
,”
Proc. Inst. Mech. Eng. B
,
230
(
10
), pp.
1961
1968
.
2.
Jiang
,
P.
, and
Leng
,
J.
,
2017
, “
The Configuration of Social Manufacturing: A Social Intelligence Way Toward Service-Oriented Manufacturing
,”
Int. J. Manuf. Res.
,
12
(
1
), pp.
4
19
.
3.
Hamalainen
,
M.
, and
Karjalainen
,
J.
,
2017
, “
Social Manufacturing: When the Maker Movement Meets Interfirm Production Networks
,”
Bus. Horiz.
,
60
(
6
), pp.
795
805
.
4.
Moghaddam
,
M.
,
Cadavid
,
M. N.
,
Kenley
,
C. R.
, and
Deshmukh
,
A. V.
,
2018
, “
Reference Architectures for Smart Manufacturing: A Critical Review
,”
J. Manuf. Syst.
,
49
, pp.
215
225
.
5.
Jiang
,
P.
,
Ding
,
K.
, and
Leng
,
J.
,
2016
, “
Towards a Cyber-Physical-Social-Connected and Service-Oriented Manufacturing Paradigm: Social Manufacturing
,”
Manuf. Lett.
,
7
, pp.
15
21
.
6.
Xiong
,
G.
,
Wang
,
F.
,
Nyberg
,
T. R.
,
Shang
,
X.
,
Zhou
,
M.
,
Shen
,
Z.
,
Li
,
S.
, and
Guo
,
C.
,
2018
, “
From Mind to Products: Towards Social Manufacturing and Service
,”
IEEE/CAA J. Autom. Sin.
,
5
(
1
), pp.
47
57
.
7.
Yang
,
M.
,
Li
,
W.
, and
Jiang
,
P.
,
2021
, “
A Collective Intelligence Oriented Three-Layer Framework for Socialized and Collaborative Product Design
,”
Expert Syst. Appl.
,
173
, p.
114742
.
8.
Yang
,
M.
, and
Jiang
,
P.
,
2020
, “
Socialized and Self-Organized Collaborative Designer Community-Resilience Modeling and Assessment
,”
Res. Eng. Des.
,
31
(
1
), pp.
3
24
.
9.
Shahriar
,
M. R.
,
2020
,
Towards a Cyber-Physical Manufacturing Cloud through Operable Digital Twins and Virtual Production Lines
,
University of Arkansas ProQuest Dissertations Publishing
,
Arkansas
.
10.
Jiang
,
P.
,
2019
, “Social Manufacturing Paradigm: Concepts, Architecture and Key Enabled Technologies,”
Social Manufacturing: Fundamentals and Applications. Springer Series in Advanced Manufacturing
,
Springer
,
Cham
.
11.
Jiang
,
P.
,
Shi
,
H.
,
Yang
,
M.
,
Guo
,
W.
,
Makanda
,
I. L. D.
, and
Dong
,
H.
,
2021
, “
Development of a Social Manufacturing Model and 3D Printing Test Bed for Industrial Internet
,”
Sci. Sin. Technol.
,
52
(
1
), pp.
88
103
.
12.
Kassner
,
L.
,
Hirmer
,
P.
,
Wieland
,
M.
,
Steimle
,
F.
,
Königsberger
,
J.
, and
Mitschang
,
B.
,
2017
, “
The Social Factory: Connecting People, Machines and Data in Manufacturing for Context-Aware Exception Escalation
,”
Proceedings of the 50th Hawaii International Conference on System Sciences
,
Hilton Waikoloa Village, HI
,
Jan. 4–7
.
13.
Romero
,
D.
,
Wuest
,
T.
,
Stahre
,
J.
, and
Gorecky
,
D.
,
2017
, “
Social Factory Architecture: Social Networking Services and Production Scenarios Through the Social Internet of Things, Services and People for the Social Operator 4.0
,”
Proceedings of the IFIP Advances in Information and Communication Technology
,
Hamburg, Germany
,
Sept. 3–7
.
14.
Zhong
,
R. Y.
,
Xu
,
X.
,
Klotz
,
E.
, and
Newman
,
S. T.
,
2017
, “
Intelligent Manufacturing in the Context of Industry 4.0: A Review
,”
Engineering
,
3
(
5
), pp.
616
630
.
15.
Siafara
,
L. C.
,
Kholerdi
,
H. A.
,
Bratukhin
,
A.
,
TaheriNejad
,
N.
,
Wendt
,
A.
,
Jantsch
,
A.
,
Treytl
,
A.
, and
Sauter
,
T.
,
2017
, “
SAMBA: A Self-Aware Health Monitoring Architecture for Distributed Industrial Systems
,”
Proceedings of the IECON 2017 – 43rd Annual Conference of the IEEE Industrial Electronics Society
,
Beijing, China
,
Dec. 18
, Vol. 135, pp.
3512
3517
.
16.
Ilsen
,
R.
,
Meissner
,
H.
, and
Aurich
,
J. C.
,
2017
, “
Optimizing Energy Consumption in a Decentralized Manufacturing System
,”
ASME J. Comput. Inf. Sci. Eng
,
17
(
2
), p.
021006
.
17.
Morozov
,
V.
, and
Proskurin
,
M.
,
2021
, “
Models of Proactive Change Management of Projects for the Creation and Development of Distributed Information Systems
,”
Adv. Inf. Technol.
,
1
(
1
), pp.
76
85
.
18.
Yesikov
,
D. O.
,
Ivutin
,
A. N.
,
Larkin
,
E. V.
, and
Kotov
,
V. V.
,
2017
, “
Multi-Agent Approach for Distributed Information Systems Reliability Prediction
,”
Procedia Comput. Sci.
,
103
, pp.
416
420
.
19.
Lv
,
Y.
, and
Lin
,
D.
,
2017
, “
Design an Intelligent Real-Time Operation Planning System in Distributed Manufacturing Network
,”
Ind. Manag. Data Syst.
,
117
(
4
), pp.
742
753
.
20.
Aftab
,
M. U.
,
Qin
,
Z.
,
Wake Hundera
,
N.
,
Oluwasanmi
,
A.
,
Jamali
,
Z.
,
Son
,
N.
, and
Tran
,
V. D.
,
2019
, “
Permission-Based Separation of Duty in Dynamic Role-Based Access Control Model
,”
Symmetry
,
11
, p.
669
. http://doi.org/10.3390/sym11050669
21.
Lu
,
J.
,
Xin
,
Y.
,
Zhang
,
Z.
,
Peng
,
H.
, and
Han
,
J.
,
2018
, “
Supporting User Authorization Queries in RBAC Systems by Role–Permission Reassignment
,”
Future Gener. Comput. Syst.
,
88
, pp.
707
717
.
22.
Hurtuk
,
J.
,
Baláž
,
A.
, and
Ádám
,
N.
,
2016
, “
Security Sandbox Based on RBAC Model
,”
Proceedings of the 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI)
,
Timisoara, Romania
,
May 12–14
, pp.
75
80
.
23.
Flores-Mendez
,
R. A.
,
1999
, “
Towards a Standardization of Multi-Agent System Framework
,”
XRDS
,
5
(
4
), pp.
18
24
.
24.
Stefanova-Stoyanova
,
V.
, and
Stankov
,
I.
,
2020
, “
Multi-Agent Systems (MAS) in the Area of IoT and Using a Model With Distributed Shared Memory System (DSM)
,”
Proceedings of the 2020 XXIX International Scientific Conference Electronics (ET)
,
Sozopol, Bulgaria
,
Sept. 16–18
, pp.
1
4
.
25.
Lu
,
R.
,
Li
,
Y.
,
Li
,
Y.
,
Jiang
,
J.
, and
Ding
,
Y.
,
2020
, “
Multi-Agent Deep Reinforcement Learning Based Demand Response for Discrete Manufacturing Systems Energy Management
,”
Appl. Energy
,
276
, p.
115473
.
26.
Kim
,
Y. G.
,
Lee
,
S.
,
Son
,
J.
,
Bae
,
H.
, and
Chung
,
B. D.
,
2020
, “
Multi-Agent System and Reinforcement Learning Approach for Distributed Intelligence in a Flexible Smart Manufacturing System
,”
J. Manuf. Syst.
,
57
, pp.
440
450
.
27.
Seitz
,
M.
,
Gehlhoff
,
F.
,
Cruz Salazar
,
L. A.
,
Fay
,
A.
, and
Vogel-Heuser
,
B.
,
2021
, “
Automation Platform Independent Multi-Agent System for Robust Networks of Production Resources in Industry 4.0
,”
J. Intell. Manuf.
,
32
(
7
), pp.
2023
2041
.
28.
Zhang
,
Y.
,
Qian
,
C.
,
Lv
,
J.
, and
Liu
,
Y.
,
2017
, “
Agent and Cyber-Physical System Based Self-Organizing and Self-Adaptive Intelligent Shopfloor
,”
IEEE Trans. Ind. Inf.
,
13
(
2
), pp.
737
747
.
29.
Wang
,
S.
,
Wan
,
J.
,
Zhang
,
D.
,
Li
,
D.
, and
Zhang
,
C.
,
2016
, “
Towards Smart Factory for Industry 4.0: A Self-Organized Multi-Agent System With Big Data Based Feedback and Coordination
,”
Comput. Networks
,
101
, pp.
158
168
.
30.
Parto
,
M.
,
Urbina Coronado
,
P. D.
,
Saldana
,
C.
, and
Kurfess
,
T.
,
2022
, “
Cyber-Physical System Implementation for Manufacturing With Analytics in the Cloud Layer
,”
ASME J. Comput. Inf. Sci. Eng
,
22
(
1
), p.
011011
.
31.
Mardan
,
A.
,
2018
, “Real-Time Apps With WebSocket,”
Practical Node
,
I. O.
Socket
, and
J. S.
Derby
, eds.,
JS Apress
,
Berkeley, CA
.
32.
Kang
,
Y.
,
Cai
,
Z.
,
Tan
,
C.
,
Huang
,
Q.
, and
Liu
,
H.
,
2020
, “
Natural Language Processing (NLP) in Management Research: A Literature Review
,”
J. Manag. Anal.
,
7
(
2
), pp.
139
172
.
33.
Soni
,
K.
, and
Kumar
,
S.
,
2019
, “
Comparison of RBAC and ABAC Security Models for Private Cloud
,”
Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon)
,
Faridabad, India
,
Feb. 14–16
, pp.
584
587
.
34.
Subramanian
,
H.
, and
Raj
,
P.
,
2019
, “Hands-On RESTful API Design Patterns and Best Practices: Design, Develop, and Deploy Highly Adaptable, Scalable, and Secure RESTful Web APIs”. https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2018964.
35.
Silva
,
D.
,
Inocêncio
,
L.
,
Soares
,
J.
, and
Sofia
,
R.
,
2021
, “
A Performance Analysis of Internet of Things Networking Protocols: Evaluating MQTT, CoAP, OPC UA
,”
Appl. Sci.
,
11
(
11
), p.
4879
.
You do not currently have access to this content.