Abstract

Computational design methods provide opportunities to discover novel and diverse designs that traditional optimization approaches cannot find or that use physical phenomena in ways that engineers have overlooked. However, existing methods require supervised objectives to search or optimize for explicit behaviors or functions—e.g., optimizing aerodynamic lift. In contrast, this article unpacks what it means to discover interesting behaviors or functions we do not know about a priori using data from experiments or simulation in a fully unsupervised way. Doing so enables computers to invent or re-invent new or existing mechanical functions given only measurements of physical fields (e.g., fluid velocity fields) without directly specifying a set of objectives to optimize. This article explores this approach via two related parts. First, we study clustering algorithms that can detect novel device families from simulation data. Specifically, we contribute a modification to the hierarchical density-based spatial clustering of applications with noise algorithm via the use of the silhouette score to reduce excessively granular clusters. Second, we study multiple ways by which we preprocess simulation data to increase its discriminatory power in the context of clustering device behavior. This leads to an insight regarding the important role that a design’s representation has in compactly encoding its behavior. We test our contributions via the task of discovering simple fluidic devices and show that our proposed clustering algorithm outperforms other density-based algorithms, but that K-means clustering outperforms density-based algorithms, as measured by adjusted Rand score. However, the device types may have an even stronger impact on the clustering. This opens up new avenues of research wherein computers can automatically derive new device functions, behaviors, and structures without the need for human labels or guidance.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Gero
,
J. S.
,
1990
, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Magazine
,
11
(
4
), pp.
26
26
.
2.
Vestad
,
T.
,
Marr
,
D. W. M.
, and
Munakata
,
T.
,
2004
, “
Flow Resistance for Microfluidic Logic Operations
,”
Appl. Phys. Lett.
,
84
(
25
), pp.
5074
5075
.
3.
Weaver
,
J.
,
Melin
,
J.
,
Stark
,
D.
,
Quake
,
S.
, and
Horowitz
,
M.
,
2010
, “
Static Control Logic for Microfluidic Devices Using Pressure-Gain Valves
,”
Nat. Phys.
,
6
(
1
), pp.
218
223
.
4.
Prakash
,
M.
, and
Gershenfeld
,
N.
,
2007
, “
Microfluidic Bubble Logic
,”
Science
,
315
(
5813
), pp.
832
835
.
5.
Jandieri
,
V.
,
Khomeriki
,
R.
, and
Erni
,
D.
,
2018
, “
Realization of True All-Optical AND Logic Gate Based on Nonlinear Coupled Air-Hole Type Photonic Crystal Waveguides
,”
Opt. Express
,
26
(
16
), pp.
19845
19853
.
6.
Wang
,
L.
,
Qian
,
K.
,
Huang
,
Y.
,
Jin
,
N.
,
Lai
,
H.
,
Zhang
,
T.
,
Li
,
C.
,
Zhang
,
C.
,
Bi
,
X.
, and
Wu
,
D.
,
2015
, “
SynBioLGDB: A Resource for Experimentally Validated Logic Gates in Synthetic Biology
,”
Sci. Rep.
,
5
(
8090
), pp.
1
5
.
7.
Monz
,
T.
,
Kim
,
K.
,
Hänsel
,
W.
,
Riebe
,
M.
,
Villar
,
A.
,
Schindler
,
P.
,
Chwalla
,
M.
,
Hennrich
,
M.
, and
Blatt
,
R.
,
2009
, “
Realization of the Quantum Toffoli Gate With Trapped Ions
,”
Phys. Rev. Lett.
,
102
(
4
), p.
040501
.
8.
Shi
,
X.-F.
,
2018
, “
Deutsch, Toffoli, and CNOT Gates Via Rydberg Blockade of Neutral Atoms
,”
Phys. Rev. Appl.
,
9
(
5
), p.
051001
.
9.
Neudeck
,
P. G.
,
Meredith
,
R. D.
,
Chen
,
L.
,
Spry
,
D. J.
,
Nakley
,
L. M.
, and
Hunter
,
G. W.
,
2016
, “
Prolonged Silicon Carbide Integrated Circuit Operation in Venus Surface Atmospheric Conditions
,”
AIP Adv.
,
6
(
12
), p.
125119
.
10.
Rousseeuw
,
P. J.
,
1987
, “
Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis
,”
J. Comput. Appl. Math.
,
20
(
1
), pp.
53
65
.
11.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comput.
,
22
(
4
), pp.
745
762
.
12.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
13.
Goel
,
A. K.
,
Rugaber
,
S.
, and
Vattam
,
S.
,
2009
, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Eng. Design, Anal. Manufact.
,
23
(
1
), pp.
23
35
.
14.
Mokhtarian
,
H.
,
Coatanéa
,
E.
, and
Paris
,
H.
,
2017
, “
Function Modeling Combined With Physics-Based Reasoning for Assessing Design Options and Supporting Innovative Ideation
,”
Artif. Intell. Eng. Design, Anal. Manufact.
,
31
(
4
), pp.
476
500
.
15.
Mikolov
,
T.
,
Chen
,
K.
,
Corrado
,
G.
, and
Dean
,
J.
,
2013
, “
Efficient Estimation of Word Representations in Vector Space
,”
International Conference on Learning Representations 2013
,
Scottsdale, AZ
,
May 2–4
.
16.
Mikolov
,
T.
,
Sutskever
,
I.
,
Chen
,
K.
,
Corrado
,
G.
, and
Dean
,
J.
,
2013
,
Distributed Representations of Words and Phrases and Their Compositionality
,
Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS'13)
,
Lake Tahoe, NV
,
Curran Associates Inc.
, Vol. 2, pp.
3111
3119
.
17.
Zhang
,
C.
,
Kwon
,
Y. P.
,
Kramer
,
J.
,
Kim
,
E.
, and
Agogino
,
A. M.
,
2017
, “
Concept Clustering in Design Teams: A Comparison of Human and Machine Clustering
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111414
.
18.
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Phrase Embedding and Clustering for Sub-Feature Extraction From Online Data
,”
ASME J. Mech. Des.
,
144
(
5
), p.
054501
.
19.
Ahmed
,
F.
,
Fuge
,
M.
, and
Gorbunov
,
L. D.
,
2016
, “
Discovering Diverse, High Quality Design Ideas From a Large Corpus
,” Volume 7: 28th International Conference on Design Theory and Methodology of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Paper No. V007T06A008.
20.
Manning
,
C. D.
,
Raghavan
,
P.
, and
Schötze
,
H.
,
2008
,
Introduction to Information Retrieval
,
Cambridge University Press
,
Cambridge, UK
.
21.
Wang
,
J.
,
Chiu
,
K.
, and
Fuge
,
M.
,
2020
, “
Learning to Abstract and Compose Mechanical Device Function and Behavior
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Online
,
Aug. 17–19
,
American Society of Mechanical Engineers Digital Collection
.
22.
Usman
,
A.
,
Rafiq
,
M.
,
Saeed
,
M.
,
Nauman
,
A.
,
Almqvist
,
A.
, and
Liwicki
,
M.
,
2021
, “
Machine Learning Computational Fluid Dynamics
,” 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp.
1
4
.
23.
Brenowitz
,
N. D.
, and
Bretherton
,
C. S.
,
2018
, “
Prognostic Validation of a Neural Network Unified Physics Parameterization
,”
Geophys. Res. Lett.
,
45
(
12
), pp.
6289
6298
.
24.
Jang
,
S.
,
Yoo
,
S.
, and
Kang
,
N.
,
2022
, “
Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization Designs
,”
Comput. Aided Design
,
146
(
C
), p.
103225
.
25.
Fujita
,
K.
,
Minowa
,
K.
,
Nomaguchi
,
Y.
,
Yamasaki
,
S.
, and
Yaji
,
K
,
2021
,
Design Concept Generation With Variational Deep Embedding Over Comprehensive Optimization
, Volume 3B: 47th Design Automation Conference (DAC) of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Papaer No. V03BT03A038.
26.
Heyrani
,
N. A.
,
Rashad
,
M. Fathy
, and
Ahmed
,
Faez
,
2021
, “
CreativeGAN: Editing Generative Adversarial Networks for Creative Design Synthesis
,” Volume 3A: 47th Design Automation Conference (DAC) of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Paper No. V03AT03A002.
27.
Chiu
,
K.
,
Anderson
,
D.
, and
Fuge
,
M.
,
2021
, “
Automatically Discovering Mechanical Functions From Physical Behaviors via Clustering
,”
ASME 2021 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Virtual Online
,
Aug. 17–19
.
28.
Lloyd
,
S.
,
1982
, “
Least Squares Quantization in PCM
,”
IEEE Trans. Inform. Theory
,
28
(
2
), pp.
129
137
.
29.
Ester
,
M.
,
Kriegel
,
H.-P.
,
Sander
,
J.
, and
Xu
,
X.
,
1996
, “
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases With Noise
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
,
Portland, OR
,
Aug. 2–4
, pp.
226
231
.
30.
Campello
,
R. J. G. B.
,
Moulavi
,
D.
, and
Sander
,
J.
,
2013
, “
Density-Based Clustering Based on Hierarchical Density Estimates
,”
Advances in Knowledge Discovery and Data Mining
, 17th Pacific-Asia Conference, PAKDD 2013 in Gold Coast, Australia, Apr. 14–17,
J.
Pei
,
V. S.
Tseng
,
L.
Cao
,
H.
Motoda
, and
G.
Xu
, eds., pp.
160
172
.
31.
Linden
,
D. S.
,
2002
, “
Antenna Design Using Genetic Algorithms
,” Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO’02,
Morgan Kaufmann Publishers Inc.
, pp.
1133
1140
.
32.
Hu
,
R.
,
van Kaick
,
O.
,
Wu
,
B.
,
Huang
,
H.
,
Shamir
,
A.
, and
Zhang
,
H.
,
2016
, “
Learning How Objects Function Via Co-Analysis of Interactions
,”
ACM Trans. Graph.
,
35
(
4
), pp.
1
13
.
33.
Hong
,
Y.
,
Mo
,
K.
,
Yi
,
L.
,
Guibas
,
L.
,
Torralba
,
A.
,
Tenenbaum
,
J.
, and
Gan
,
C.
,
2022
, “
Fixing Malfunctional Objects With Learned Physical Simulation and Functional Prediction
,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
New Orleans, LA
,
June 21–24
.
34.
Wang
,
H.
,
Pirk
,
S.
,
Yumer
,
E.
,
Kim
,
V.
,
Sener
,
O.
,
Sridhar
,
S.
, and
Guibas
,
L.
,
2019
, “
Learning a Generative Model for Multi-Step Human-Object Interactions From Videos
,”
Computer Graphics Forum.
,
38
(
2
), pp.
367
378
.
35.
Prim
,
R. C.
,
1957
, “
Shortest Connection Networks and Some Generalizations
,”
Bell Syst. Tech. J.
,
36
(
6
), pp.
1389
1401
.
36.
Bellman
,
R.
,
1957
,
Dynamic Programming
,
Princeton University Press
,
Princeton, NY
.
37.
Delaunay
,
B.
,
1934
, “
Sur La Sphére Vide
,”
Bull. de l’Académie des Sci. de l’URSS, Classe des Sci. Math. Nat.
,
6
(
7
), pp.
793
800
.
38.
Schlömer
,
N.
,
2022
, “
pygmsh: A Python Frontend for Gmsh (v7.1.17)
,” Zenodo. https://github.com/nschloe/pygmsh
39.
Geuzaine
,
C.
, and
Remacl
,
J. F.
,
2009
, “
Gmsh: a Three-Dimensional Finite Element Mesh Generator With Built-in Pre- and Post-processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.
40.
Schlömer
,
N.
,
2022
, “
meshio: Tools for mesh files (v5.3.4)
,”. Zenodo. https://github.com/nschloe/meshio
41.
Alnæs
,
M. S.
,
Blechta
,
J.
,
Hake
,
J.
,
Johansson
,
A.
,
Kehlet
,
B.
,
Logg
,
A.
,
Richardson
,
C.
,
Ring
,
J.
,
Rognes
,
M. E.
, and
Wells
,
G. N.
,
2015
, “
The Fenics Project Version 1.5
,”
Arch. Numer. Soft.
,
3
(
100
), pp.
9
23
.
42.
Hubert
,
L.
, and
Arabie
,
P.
,
1985
, “
Comparing Partitions
,”
J. Class.
,
2
(
1
), pp.
193
218
.
43.
Dempster
,
A. P.
,
Laird
,
N. M.
, and
Rubin
,
D. B.
,
1977
, “
Maximum Likelihood From Incomplete Data via the Em Algorithm
,”
J. R. Stat. Soc. Seri. B (Methodol.)
,
39
(
1
), pp.
1
38
.
44.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
85
), pp.
2825
2830
.
45.
McInnes
,
L.
,
Healy
,
J.
, and
Astels
,
S.
,
2017
, “
HDBSCAN: Hierarchical Density Based Clustering
,”
J. Open Source Soft.
,
2
(
11
), p.
2017
.
46.
Nogueira
,
F.
,
2014
, “
Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python
,” https://github.com/bayesian-optimization/BayesianOptimization
47.
Schlkopf
,
B.
,
Smola
,
A.
, and
Müller
,
K.-R.
,
1998
, “
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
,”
Neural Comput.
,
10
(
5
), pp.
1299
1319
.
You do not currently have access to this content.