Abstract

In the context of the 2030 carbon dioxide emissions peak target, achieving carbon neutrality in manufacturing is essential. However, the complex and extensive supply chain, ranging from raw materials to the final product, presents significant challenges in assessing the carbon footprint throughout the lifecycle. This paper concentrates on the manufacturing process and introduces a modeling approach for quantifying and predicting carbon emissions, utilizing industrial intelligent technologies like process mining and knowledge graphs. First, it is crucial to establish a comprehensive carbon emission quantification model for each manufacturing stage, encompassing the energy, material, personnel, and carbon flow. Subsequently, this paper proposes an industrial carbon emission knowledge graph-based model (CarbonKG) to record and compute emissions at each production stage. Furthermore, process mining technology aids in analyzing the global distribution and movement of carbon emissions within the manufacturing process. Finally, this research presents a two-stage predictive approach for manufacturing process carbon emissions based on CarbonKG. The first stage involves initializing a local order carbon graph for prediction and developing a model to find similar cases. The second stage uses a graph-matching model to identify the Top-K similar order cases, using their carbon emission data for comprehensive prediction. Moreover, the feasibility of the proposed method was verified using actual production process data from industrial companies.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Fadara
,
T. G.
, and
Wong
,
K. Y.
,
2023
, “
A Decision Support System for Sustainable Textile Product Assessment
,”
Text. Res. J.
,
93
(
9–10
), pp.
1971
1989
.
2.
Zhao
,
H.
, and
Lin
,
B.
,
2019
, “
Assessing the Energy Productivity of China’s Textile Industry Under Carbon Emission Constraints
,”
J. Clean. Prod.
,
228
, pp.
197
207
.
3.
Qian
,
W.
,
Ji
,
X.
,
Xu
,
P.
, and
Wang
,
L.
,
2021
, “
Carbon Footprint and Water Footprint Assessment of Virgin and Recycled Polyester Textiles
,”
Text. Res. J.
,
91
(
21–22
), pp.
2468
2475
.
4.
He
,
B.
,
Wu
,
J.
,
Zhu
,
X.
,
Zhang
,
D.
, and
Cao
,
J.
,
2023
, “
Product Multibody Dynamics Analysis for Low-Carbon Footprint
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
2
), p.
021010
.
5.
He
,
B.
, and
Mao
,
H.
,
2023
, “
Digital Twin-Driven Product Sustainable Design for Low Carbon Footprint
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060805
.
6.
Zhang
,
Z.
,
Guo
,
C.
,
Wei
,
Q.
,
Guo
,
Z.
, and
Gao
,
L.
,
2021
, “
A Bi-Objective Stochastic Order Planning Problem in Make-to-Order Multi-Site Textile Manufacturing
,”
Comput. Ind. Eng.
,
158
, p.
107367
.
7.
Van Der Aalst
,
W.
,
2012
, “
Process Mining: Overview and Opportunities
,”
ACM Trans. Manag. Inf. Syst. TMIS
,
3
(
2
), pp.
1
17
.
8.
Munoz-Gama
,
J.
,
Martin
,
N.
,
Fernandez-Llatas
,
C.
,
Johnson
,
O. A.
,
Sepúlveda
,
M.
,
Helm
,
E.
,
Galvez-Yanjari
,
V.
,
Rojas
,
E.
,
Martinez-Millana
,
A.
, and
Aloini
,
D.
,
2022
, “
Process Mining for Healthcare: Characteristics and Challenges
,”
J. Biomed. Inform.
,
127
, p.
103994
.
9.
Ding
,
S.
,
Xu
,
N.
,
Ye
,
J.
,
Zhou
,
W.
, and
Zhang
,
X.
,
2020
, “
Estimating Chinese Energy-Related CO2 Emissions by Employing a Novel Discrete Grey Prediction Model
,”
J. Clean. Prod.
,
259
, p.
120793
.
10.
Ofosu-Adarkwa
,
J.
,
Xie
,
N.
, and
Javed
,
S. A.
,
2020
, “
Forecasting CO2 Emissions of China’s Cement Industry Using a Hybrid Verhulst-GM(1,N) Model and Emissions’ Technical Conversion
,”
Renewable Sustainable Energy Rev.
,
130
, p.
109945
.
11.
Geng
,
Z.
,
Zhang
,
Y.
,
Li
,
C.
,
Han
,
Y.
,
Cui
,
Y.
, and
Yu
,
B.
,
2020
, “
Energy Optimization and Prediction Modeling of Petrochemical Industries: An Improved Convolutional Neural Network Based on Cross-Feature
,”
Energy
,
194
, p.
116851
.
12.
Roh
,
B.-M.
,
Kumara
,
S. R. T.
,
Yang
,
H.
,
Simpson
,
T. W.
,
Witherell
,
P.
,
Jones
,
A. T.
, and
Lu
,
Y.
,
2022
, “
Ontology Network-Based In-Situ Sensor Selection for Quality Management in Metal Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
6
), p.
060905
.
13.
Zhu
,
J.
,
Han
,
X.
,
Deng
,
H.
,
Tao
,
C.
,
Zhao
,
L.
,
Wang
,
P.
,
Lin
,
T.
, and
Li
,
H.
,
2022
, “
KST-GCN: A Knowledge-Driven Spatial-Temporal Graph Convolutional Network for Traffic Forecasting
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
9
), pp.
15055
15065
.
14.
Cheng
,
D.
,
Yang
,
F.
,
Xiang
,
S.
, and
Liu
,
J.
,
2022
, “
Financial Time Series Forecasting With Multi-modality Graph Neural Network
,”
Pattern Recognit.
,
121
, p.
108218
.
15.
Ling
,
X.
,
Wu
,
L.
,
Wang
,
S.
,
Ma
,
T.
,
Xu
,
F.
,
Liu
,
A. X.
,
Wu
,
C.
, and
Ji
,
S.
,
2021
, “
Multilevel Graph Matching Networks for Deep Graph Similarity Learning
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
34
(
2
), pp.
799
813
.
16.
Wang
,
L.
,
Zheng
,
Y.
,
Jin
,
D.
,
Li
,
F.
,
Qiao
,
Y.
, and
Pan
,
S.
,
2023
, “
Contrastive Graph Similarity Networks
,”
ACM Trans. Web
,
18
(
2
), pp.
1
20
.
17.
Dupuis
,
A.
,
Dadouchi
,
C.
, and
Agard
,
B.
,
2022
, “
Predicting Crop Rotations Using Process Mining Techniques and Markov Principals
,”
Comput. Electron. Agric.
,
194
, p.
106686
.
18.
Chapela-Campa
,
D.
,
Dumas
,
M.
,
Mucientes
,
M.
, and
Lama
,
M.
,
2022
, “
Efficient Edge Filtering of Directly-Follows Graphs for Process Mining
,”
Inf. Sci.
,
610
, pp.
830
846
.
19.
Leemans
,
S. J.
, and
Fahland
,
D.
,
2020
, “
Information-Preserving Abstractions of Event Data in Process Mining
,”
Knowl. Inf. Syst.
,
62
(
3
), pp.
1143
1197
.
20.
Dos Santos Garcia
,
C.
,
Meincheim
,
A.
,
Junior
,
E. R. F.
,
Dallagassa
,
M. R.
,
Sato
,
D. M. V.
,
Carvalho
,
D. R.
,
Santos
,
E. A. P.
, and
Scalabrin
,
E. E.
,
2019
, “
Process Mining Techniques and Applications–A Systematic Mapping Study
,”
Expert Syst. Appl.
,
133
, pp.
260
295
.
21.
Subramanian
,
K.
,
Chopra
,
S. S.
,
Cakin
,
E.
,
Li
,
X.
, and
Lin
,
C. S. K.
,
2020
, “
Environmental Life Cycle Assessment of Textile Bio-Recycling–Valorizing Cotton-Polyester Textile Waste to Pet Fiber and Glucose Syrup
,”
Resour. Conserv. Recycl.
,
161
, p.
104989
.
22.
He
,
B.
,
Yuan
,
X.
,
Qian
,
S.
, and
Li
,
B.
,
2023
, “
Carbon Neutrality: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060809
.
23.
Shen
,
X.
,
Li
,
X.
,
Zhou
,
B.
,
Jiang
,
Y.
, and
Bao
,
J.
,
2023
, “
Dynamic Knowledge Modeling and Fusion Method for Custom Apparel Production Process Based on Knowledge Graph
,”
Adv. Eng. Inform.
,
55
, p.
101880
.
24.
Kwon
,
S.
,
Monnier
,
L. V.
,
Barbau
,
R.
, and
Bernstein
,
W. Z.
,
2022
, “
A New Implementation of ONTOSTEP : Flexible Generation of Ontology and Knowledge Graphs of EXPRESS-Driven Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
024502
.
25.
Gruber
,
T. R.
,
1993
, “
A Translation Approach to Portable Ontology Specifications
,”
Knowl. Acquis.
,
5
(
2
), pp.
199
220
.
26.
Hans
,
A.
,
Chaudhari
,
A. M.
,
Bilionis
,
I.
, and
Panchal
,
J. H.
,
2023
, “
A Bayesian Hierarchical Model for Extracting Individuals’ Theory-Based Causal Knowledge
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031011
.
27.
Zhou
,
B.
,
Bao
,
J.
,
Li
,
J.
,
Lu
,
Y.
,
Liu
,
T.
, and
Zhang
,
Q.
,
2021
, “
A Novel Knowledge Graph-Based Optimization Approach for Resource Allocation in Discrete Manufacturing Workshops
,”
Rob. Comput.-Integr. Manuf.
,
71
, p.
102160
.
28.
Liu
,
M.
,
Li
,
X.
,
Li
,
J.
,
Liu
,
Y.
,
Zhou
,
B.
, and
Bao
,
J.
,
2022
, “
A Knowledge Graph-Based Data Representation Approach for IIoT-Enabled Cognitive Manufacturing
,”
Adv. Eng. Inform.
,
51
, p.
101515
.
29.
Zhou
,
B.
,
Li
,
J.
,
Li
,
X.
,
Hua
,
B.
, and
Bao
,
J.
,
2022
, “
Leveraging on Causal Knowledge for Enhancing the Root Cause Analysis of Equipment Spot Inspection Failures
,”
Adv. Eng. Inform.
,
54
, p.
101799
.
30.
Guo
,
L.
,
Yan
,
F.
,
Li
,
T.
,
Yang
,
T.
, and
Lu
,
Y.
,
2022
, “
An Automatic Method for Constructing Machining Process Knowledge Base From Knowledge Graph
,”
Rob. Comput.-Integr. Manuf.
,
73
, p.
102222
.
31.
Bordes
,
A.
,
Usunier
,
N.
,
Garcia-Duran
,
A.
,
Weston
,
J.
, and
Yakhnenko
,
O.
,
2013
, “
Translating Embeddings for Modeling Multi-relational Data
,”
Adv. Neural Inf. Process. Syst.
,
26
, pp.
2787
2795
.
32.
He
,
B.
,
Liu
,
L.
, and
Zhang
,
D.
,
2021
, “
Digital Twin-Driven Remaining Useful Life Prediction for Gear Performance Degradation: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
030801
.
33.
Cheng
,
Y.
,
Zhu
,
X.
,
Qian
,
J.
,
Wen
,
F.
, and
Liu
,
P.
,
2022
, “
Cross-Modal Graph Matching Network for Image-Text Retrieval
,”
ACM Trans. Multimed. Comput. Commun. Appl. TOMM
,
18
(
4
), pp.
1
23
.
34.
Siddharth
,
L.
,
Blessing
,
L. T. M.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2022
, “
Engineering Knowledge Graph From Patent Database
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021008
.
35.
Gwadabe
,
T. R.
,
Al-hababi
,
M. A. M.
, and
Liu
,
Y.
,
2023
, “
SimGNN: Simplified Graph Neural Networks for Session-Based Recommendation
,”
Appl. Intell.
,
53
(
19
), pp.
22789
22802
.
36.
Chen
,
Y.
,
Yang
,
Y.
,
Sun
,
L.
,
Shen
,
Y.
,
Wang
,
L.
, and
Wang
,
X.
,
2021
, “
Analysis of Carbon Emission and Its Influencing Factors of Shanghai’s Textile and Apparel Industry
,”
Int. J. Glob. Warm.
,
25
(
2
), pp.
123
134
.
37.
Li
,
X.
,
Chen
,
L.
, and
Ding
,
X.
,
2019
, “
Allocation Methodology of Process-Level Carbon Footprint Calculation in Textile and Apparel Products
,”
Sustainability
,
11
(
16
), p.
4471
.
38.
Lin
,
B.
, and
Xu
,
M.
,
2019
, “
Exploring the Green Total Factor Productivity of China’s Metallurgical Industry Under Carbon Tax: A Perspective on Factor Substitution
,”
J. Clean. Prod.
,
233
, pp.
1322
1333
.
You do not currently have access to this content.