Abstract

Information lithography in manufacturing is a broad set of techniques for encoding sequences of bits as physical or behavioral features in physical parts. It is an effective approach for part traceability and anti-counterfeiting. Several techniques have recently been proposed for embedding 2D codes in 3D printed parts by local control of geometry or material. This paper presents an approach to embed and retrieve information in additive manufacturing (AM) parts by controlling the printing process parameters. The approach leverages variations in printing speed to encode information on the surface of AM parts. Optical imaging devices, such as 2D scanners and optical profilometers, are employed to read the embedded information, enabling the capture of local height differences on the part surfaces that embody 2D codes such as QR codes. The retrieved information is processed using computer vision techniques such as morphological segmentation and binary classification. First, the impact of variations in the encoding parameters on the information retrieval accuracy is characterized. Then, the feasibility and effectiveness of the proposed scheme are demonstrated through experimental results, showcasing a high accuracy in retrieving encoded messages and successfully distinguishing subtle surface features resulting from varying printing speeds. The proposed approach offers an inexpensive and efficient method for information lithography, allowing for the secure embedding of information, e.g., serial numbers and watermarks, while addressing counterfeiting and security concerns in diverse industries.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Chen
,
L.
,
He
,
Y.
,
Yang
,
Y.
,
Niu
,
S.
, and
Ren
,
H.
,
2017
, “
The Research Status and Development Trend of Additive Manufacturing Technology
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9–12
), pp.
3651
3660
.
2.
Liu
,
R.
,
Wang
,
Z.
,
Sparks
,
T.
,
Liou
,
F.
, and
Newkirk
,
J.
,
2017
, “
Aerospace Applications of Laser Additive Manufacturing
,”
Laser Additive Manufacturing
,
M.
Brandt
, ed.,
Elsevier
,
Duxford, UK
, pp.
351
371
.
3.
Leal
,
R.
,
Barreiros
,
F.
,
Alves
,
L.
,
Romeiro
,
F.
,
Vasco
,
J.
,
Santos
,
M.
, and
Marto
,
C.
,
2017
, “
Additive Manufacturing Tooling for the Automotive Industry
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
1671
1676
.
4.
Pan
,
Y.
,
White
,
J.
,
Schmidt
,
D.
,
Elhabashy
,
A.
,
Sturm
,
L.
,
Camelio
,
J.
, and
Williams
,
C.
,
2017
, “
Taxonomies for Reasoning About Cyber-physical Attacks in IoT-based Manufacturing Systems
,”
International Journal of Interactive Multimedia and Artificial Intelligence
,
4
(
3
), pp.
45
54
.
5.
Wells
,
L. J.
,
Camelio
,
J. A.
,
Williams
,
C. B.
, and
White
,
J.
,
2014
, “
Cyber-physical Security Challenges in Manufacturing Systems
,”
Manuf. Lett.
,
2
(
2
), pp.
74
77
.
6.
Yampolskiy
,
M.
,
King
,
W. E.
,
Gatlin
,
J.
,
Belikovetsky
,
S.
,
Brown
,
A.
,
Skjellum
,
A.
, and
Elovici
,
Y.
,
2018
, “
Security of Additive Manufacturing: Attack Taxonomy and Survey
,”
Addit. Manuf.
,
21
, pp.
431
457
.
7.
IBM
,
2022
, “
X-Force Threat Intelligence Index 2022
,” https://www.ibm.com/downloads/cas/ADLMYLAZ.
8.
Chaduvula
,
S. C.
,
Dachowicz
,
A.
,
Atallah
,
M. J.
, and
Panchal
,
J. H.
,
2018
, “
Security in Cyber-enabled Design and Manufacturing: A Survey
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
040802
.
9.
Von Solms
,
R.
, and
Van Niekerk
,
J.
,
2013
, “
From Information Security to Cyber Security
,”
Comput. Secur.
,
38
, pp.
97
102
.
10.
Dachowicz
,
A.
,
Atallah
,
M.
, and
Panchal
,
J. H.
,
2018
, “
Optical Puf Design for Anti-counterfeiting in Manufacturing of Metallic Goods
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1B: 38th Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
.
11.
Hong
,
Y.
,
Vaidya
,
J.
, and
Wang
,
S.
,
2013
, “
A Survey of Privacy-Aware Supply Chain Collaboration: From Theory to Applications
,”
J. Inf. Syst.
,
28
(
1
), pp.
243
268
.
12.
ElSayed
,
K. A.
,
Dachowicz
,
A.
,
Atallah
,
M. J.
, and
Panchal
,
J. H.
,
2023
, “
Information Embedding for Secure Manufacturing: Challenges and Research Opportunities
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060813
.
13.
Suzuki
,
M.
,
Dechrueng
,
P.
,
Techavichian
,
S.
,
Silapasuphakornwong
,
P.
,
Torii
,
H.
, and
Uehira
,
K.
,
2017
, “
Embedding Information Into Objects Fabricated With 3-d Printers by Forming Fine Cavities Inside Them
,”
Electron. Imag.
,
2017
(
7
), pp.
6
9
.
14.
Wei
,
C.
,
Sun
,
Z.
,
Huang
,
Y.
, and
Li
,
L.
,
2018
, “
Embedding Anti-counterfeiting Features in Metallic Components Via Multiple Material Additive Manufacturing
,”
Addit. Manuf.
,
24
, pp.
1
12
.
15.
Harrison
,
C.
,
Xiao
,
R.
, and
Hudson
,
S.
,
2012
, “
Acoustic Barcodes: Passive, Durable and Inexpensive Notched Identification Tags
,”
Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology
,
Cambridge, MA
,
Oct. 7–10
, pp.
563
568
.
16.
Salas
,
D.
,
Ebeperi
,
D.
,
Elverud
,
M.
,
Arróyave
,
R.
,
Malak
,
R.
, and
Karaman
,
I.
,
2022
, “
Embedding Hidden Information in Additively Manufactured Metals Via Magnetic Property Grading for Traceability
,”
Addit. Manuf.
,
60
, p.
103261
.
17.
ElSayed
,
K. A.
,
Dachowicz
,
A.
, and
Panchal
,
J. H.
,
2021
, “
Information Embedding in Additive Manufacturing Through Printing Speed Control
,”
AMSec ’21
,
Virtual Event, South Korea
,
Nov. 19
, Association for Computing Machinery, pp.
31
37
.
18.
Chen
,
F.
,
Luo
,
Y.
,
Tsoutsos
,
N. G.
,
Maniatakos
,
M.
,
Shahin
,
K.
, and
Gupta
,
N.
,
2019
, “
Embedding Tracking Codes in Additive Manufactured Parts for Product Authentication
,”
Adv. Eng. Mater.
,
21
(
4
), p.
1800495
.
19.
Li
,
Z.
,
Rathore
,
A. S.
,
Song
,
C.
,
Wei
,
S.
,
Wang
,
Y.
, and
Xu
,
W.
,
2018
, “
Printracker: Fingerprinting 3D Printers Using Commodity Scanners
,”
Proceedings of the 2018 ACM Sigsac Conference on Computer and Communications Security
,
Toronto, Canada
,
Oct. 15–19
, pp.
1306
1323
.
20.
Delmotte
,
A.
,
Tanaka
,
K.
,
Kubo
,
H.
,
Funatomi
,
T.
, and
Mukaigawa
,
Y.
,
2018
, “
Blind Watermarking for 3-d Printed Objects Using Surface Norm Distribution
,”
2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR)
,
Fukuoka, Japan
,
June 25–28
,
IEEE
, pp.
282
288
.
21.
Delmotte
,
A.
,
Tanaka
,
K.
,
Kubo
,
H.
,
Funatomi
,
T.
, and
Mukaigawa
,
Y.
,
2019
, “
Blind Watermarking for 3D Printed Objects by Locally Modifying Layer Thickness
,”
IEEE Trans. Multimedia
,
22
(
11
), pp.
2780
2791
.
22.
Dogan
,
M. D.
,
Faruqi
,
F.
,
Churchill
,
A. D.
,
Friedman
,
K.
,
Cheng
,
L.
,
Subramanian
,
S.
, and
Mueller
,
S.
,
2020
, “
G-id: Identifying 3D Prints Using Slicing Parameters
,”
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
,
Honolulu, HI
,
Apr. 25–30
, pp.
1
13
.
23.
Kubo
,
Y.
,
Eguchi
,
K.
, and
Aoki
,
R.
,
2020
, “
3d-Printed Object Identification Method Using Inner Structure Patterns Configured by Slicer Software
,”
Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems
,
Honolulu, HI
,
Apr. 25–30
, pp.
1
7
.
24.
Peng
,
H.
,
Liu
,
P.
,
Lu
,
L.
,
Sharf
,
A.
,
Liu
,
L.
,
Lischinski
,
D.
, and
Chen
,
B.
,
2020
, “
Fabricable Unobtrusive 3D-QR-Codes With Directional Light
,”
Computer Graphics Forum, Vol. 39
,
Utrecht, The Netherlands
,
June 6–8
,
Wiley Online Library
, pp.
15
27
.
25.
Song
,
C.
,
Li
,
Z.
,
Xu
,
W.
,
Zhou
,
C.
,
Jin
,
Z.
, and
Ren
,
K.
,
2018
, “
My Smartphone Recognizes Genuine QR Codes! Practical Unclonable QR Code Via 3d Printing
,”
Proc. ACM Inter. Mob. Wearable Ubiquitous Technol.
,
2
(
2
), pp.
1
20
.
26.
Aliaga
,
D. G.
, and
Atallah
,
M. J.
,
2009
, “
Genuinity Signatures: Designing Signatures for Verifying 3D Object Genuinity
,”
Computer Graphics Forum, Vol. 28
,
Munich, Germany
,
Mar. 30–Apr. 3
,
Wiley Online Library
, pp.
437
446
.
27.
Maia
,
H. T.
,
Li
,
D.
,
Yang
,
Y.
, and
Zheng
,
C.
,
2019
, “
LayerCode: Optical Barcodes for 3D Printed Shapes
,”
ACM Trans. Graph.
,
38
(
4
), pp.
1
14
.
28.
Kikuchi
,
R.
,
Yoshikawa
,
S.
,
Jayaraman
,
P. K.
,
Zheng
,
J.
, and
Maekawa
,
T.
,
2018
, “
Embedding QR Codes Onto B-Spline Surfaces for 3d Printing
,”
Comput. Aided Des.
,
102
, pp.
215
223
.
29.
Willis
,
K. D.
, and
Wilson
,
A. D.
,
2013
, “
Infrastructs: Fabricating Information Inside Physical Objects for Imaging in the Terahertz Region
,”
ACM Trans. Graph.
,
32
(
4
), pp.
1
10
.
30.
Suzuki
,
M.
,
Silapasuphakornwong
,
P.
,
Uehira
,
K.
,
Unno
,
H.
, and
Takashima
,
Y.
,
2015
, “
Copyright Protection for 3d Printing by Embedding Information Inside Real Fabricated Objects
,”
VISAPP (3)
,
Berlin, Germany
,
Mar. 11–14
, pp.
180
185
.
31.
Okada
,
A.
,
Silapasuphakornwong
,
P.
,
Suzuki
,
M.
,
Torii
,
H.
,
Takashima
,
Y.
, and
Uehira
,
K.
,
2015
, “
Non-destructively Reading Out Information Embedded Inside Real Objects by Using Far-Infrared Light
,”
Applications of Digital Image Processing XXXVIII, Vol. 9599
,
San Diego, CA
,
Aug. 9–13
,
International Society for Optics and Photonics
, p.
95992V
.
32.
Li
,
D.
,
Nair
,
A. S.
,
Nayar
,
S. K.
, and
Zheng
,
C.
,
2017
, “
Aircode: Unobtrusive Physical Tags for Digital Fabrication
,”
Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology
,
Québec City, QC, Canada
,
Oct. 22–25
, pp.
449
460
.
33.
Kubo
,
Y.
,
Eguchi
,
K.
,
Aoki
,
R.
,
Kondo
,
S.
,
Azuma
,
S.
, and
Indo
,
T.
,
2019
, “
Fabauth: Printed Objects Identification Using Resonant Properties of Their Inner Structures
,”
Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems
,
Glasgow, Scotland, UK
,
May 4–9
, pp.
1
6
.
34.
Baumann
,
F. W.
, and
Roller
,
D.
,
2017
, “
Watermarking for Fused Deposition Modeling by Seam Placement
,”
MATEC Web of Conferences
,
Kortrijk, Belgium
,
Feb. 24–26
, Vol. 104,
EDP Sciences
, p.
02023
.
35.
Silapasuphakornwong
,
P.
,
Torii
,
H.
,
Uehira
,
K.
,
Funsian
,
A.
,
Asawapithulsert
,
K.
, and
Sermpong
,
T.
,
2019
, “
Embedding Information in 3D Printed Objects Using Double Layered Near Infrared Fluorescent Dye
,”
Int. J. Mater. Manuf.
,
7
(
6
), pp.
230
234
.
36.
Kennedy
,
Z. C.
,
Stephenson
,
D. E.
,
Christ
,
J. F.
,
Pope
,
T. R.
,
Arey
,
B. W.
,
Barrett
,
C. A.
, and
Warner
,
M. G.
,
2017
, “
Enhanced Anti-counterfeiting Measures for Additive Manufacturing: Coupling Lanthanide Nanomaterial Chemical Signatures With Blockchain Technology
,”
J. Mater. Chem. C
,
5
(
37
), pp.
9570
9578
.
37.
Gao
,
Y.
,
Wang
,
W.
,
Jin
,
Y.
,
Zhou
,
C.
,
Xu
,
W.
, and
Jin
,
Z.
,
2021
, “
Thermotag: A Hidden ID of 3D Printers for Fingerprinting and Watermarking
,”
IEEE Trans. Inf. Forensics Secur.
,
16
(
Online
), pp.
2805
2820
.
38.
Zhang
,
X.
,
Wang
,
Q.
, and
Ivrissimtzis
,
I.
,
2018
,
Single Image Watermark Retrieval From 3D Printed Surfaces Via Convolutional Neural Networks
,
Eurographics Association
,
Swansea, UK
.
39.
Lei
,
M.
,
Wei
,
Q.
,
Li
,
M.
,
Zhang
,
J.
,
Yang
,
R.
, and
Wang
,
Y.
,
2022
, “
Numerical Simulation and Experimental Study the Effects of Process Parameters on Filament Morphology and Mechanical Properties of FDM 3D Printed PLA/GNPs Nanocomposite
,”
Polymers
,
14
(
15
), p.
3081
.
40.
Pibulchinda
,
P.
,
Barocio
,
E.
,
Favaloro
,
A. J.
, and
Pipes
,
R. B.
,
2023
, “
Influence of Printing Conditions on the Extrudate Shape and Fiber Orientation in Extrusion Deposition Additive Manufacturing
,”
Compos. Part B: Eng.
,
261
, p.
110793
.
41.
Ansari
,
A. A.
, and
Kamil
,
M.
,
2021
, “
Effect of Print Speed and Extrusion Temperature on Properties of 3d Printed PLA Using Fused Deposition Modeling Process
,”
Mater. Today: Proc.
,
45
(
6
), pp.
5462
5468
.
42.
van Kempen
,
G.
,
van Ginkel
,
M.
,
van Vliet
,
L.
,
Luengo
,
C.
, and
Rieger
,
B.
,
2021
, “
DIPimage
,” https://diplib.org/DIPimage.html.
43.
Pizer
,
S. M.
,
Amburn
,
E. P.
,
Austin
,
J. D.
,
Cromartie
,
R.
,
Geselowitz
,
A.
,
Greer
,
T.
,
Zimmerman
,
J. B.
, and
Zuiderveld
,
K.
,
1987
, “
Adaptive Histogram Equalization and Its Variations
,”
Comput. Vis. Graph. Image Process.
,
39
(
3
), pp.
355
368
.
44.
van der Walt
,
S.
,
Schönberger
,
J. L.
,
Nunez-Iglesias
,
J.
,
Boulogne
,
F.
,
Warner
,
J. D.
,
Yager
,
N.
,
Gouillart
,
E.
, and
Yu
,
T.
,
2014
, “
scikit-Image: Image Processing in Python
,”
PeerJ
,
2
, p.
e453
.
45.
Bradley
,
A. P.
,
1997
, “
The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms
,”
Pattern Recogn.
,
30
(
7
), pp.
1145
1159
.
46.
Rani
,
M. M. S.
, and
Euphrasia
,
K. R.
,
2016
, “
Data Security Through QR Code Encryption and Steganography
,”
Adv. Comput.: Int. J.
,
7
(
1/2
), pp.
1
7
.
47.
ElSayed
,
K. A.
, and
Panchal
,
J. H.
,
2023
, “
Process Control-Based Embedding and Computer Vision-Based Retrieval of 2d Codes in Fused Deposition Modeling
,”
ASME 2023 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2023), No. 116880
,
Boston, MA
,
ASME
.
48.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
770
778
.
49.
Russakovsky
,
O.
,
Deng
,
J.
,
Su
,
H.
,
Krause
,
J.
,
Satheesh
,
S.
,
Ma
,
S.
,
Huang
,
Z.
,
Karpathy
,
A.
,
Khosla
,
A.
,
Bernstein
,
M.
, and
Berg
,
A. C.
,
2015
, “
Imagenet Large Scale Visual Recognition Challenge
,”
Int. J. Comput. Vis.
,
115
, pp.
211
252
.
50.
Standard
,
N.-F.
,
2001
, “
Announcing the Advanced Encryption Standard (AES)
,”
Federal Inf. Process. Standards Pub.
,
197
(
1–51
), pp.
3
3
.
51.
McGrew
,
D. A.
, and
Viega
,
J.
,
2004
, “
The Security and Performance of the Galois/Counter Mode (GCM) of Operation
,”
International Conference on Cryptology in India
,
Chennai, India
,
Dec. 20–22
,
Springer
, pp.
343
355
.
You do not currently have access to this content.