Abstract

This article introduces a methodology for updating the nonlinear stochastic dynamics of a nozzle with uncertain computational model. The approach focuses on a high-dimensional nonlinear computational model constrained by a small target dataset. Challenges include the large number of degrees-of-freedom, geometric nonlinearities, material uncertainties, stochastic external loads, underobservability, and high computational costs. A detailed dynamic analysis of the nozzle is presented. An updated statistical surrogate model relating the observations of interest to the control parameters is constructed. Despite small training and target datasets and partial observability, the study successfully applies probabilistic learning on manifolds (PLoM) to address these challenges. PLoM captures geometric nonlinear effects and uncertainty propagation, improving conditional mean statistics compared to training data. The conditional confidence region demonstrates the ability of the methodology to accurately represent both observed and unobserved output variables, contributing to advancements in modeling complex systems.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Brès
,
G. A.
,
Jordan
,
P.
,
Jaunet
,
V.
,
Le Rallic
,
M.
,
Cavalieri
,
A. V.
,
Towne
,
A.
,
Lele
,
S. K.
,
Colonius
,
T.
, and
Schmidt
,
O. T.
,
2018
, “
Importance of the Nozzle-Exit Boundary-Layer State in Subsonic Turbulent Jets
,”
J. Fluid. Mech.
,
851
, pp.
83
124
.
2.
Dang Le
,
Q.
,
Mereu
,
R.
,
Besagni
,
G.
,
Dossena
,
V.
, and
Inzoli
,
F.
,
2018
, “
Computational Fluid Dynamics Modeling of Flashing Flow in Convergent-Divergent Nozzle
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101102
.
3.
Trummler
,
T.
,
Schmidt
,
S. J.
, and
Adams
,
N. A.
,
2020
, “
Investigation of Condensation Shocks and Re-entrant Jet Dynamics in a Cavitating Nozzle Flow by Large-Eddy Simulation
,”
Int. J. Multiphase. Flow.
,
125
, p.
103215
.
4.
French
,
J. C.
,
2011
, “
Nozzle Acoustic Dynamics and Stability Modeling
,”
J. Propul. Power.
,
27
(
6
), pp.
1266
1275
.
5.
Brès
,
G. A.
, and
Lele
,
S. K.
,
2019
, “
Modelling of Jet Noise: a Perspective From Large-Eddy Simulations
,”
Phil. Trans. R. Soc. A
,
377
(
2159
), p.
20190081
.
6.
Breen
,
N. P.
, and
Ahuja
,
K. K.
,
2021
, “
Supersonic Jet Noise Source Distributions
,”
J. Acoust. Soc. Am.
,
150
(
3
), pp.
2193
2203
.
7.
Volkov
,
K.
,
Emel’yanov
,
V.
, and
Chernyshov
,
P.
,
2022
, “
Flow Dynamics and Acoustics of the Gas Jet Emanating From a Conical Nozzle Into an Immersed Space
,”
J. Eng. Phys. Thermophys.
,
95
(
2
), pp.
409
420
.
8.
Jia-hui
,
Y.
,
Ke
,
W.
, and
Xiu-cong
,
G.
,
2023
, “
Dynamic Simulation of Nozzle Structure Based on Thermal-Fluid-Solid Coupling Analysis
,”
J. Phys.: Conf. Ser.
,
2472
, p.
012065
.
9.
Bunker
,
R.
, and
Prince
,
A.
,
1992
, “
Hybrid Rocket Motor Nozzle Material Predictions and Results
,”
28th Joint Propulsion Conference and Exhibit
,
Nashville, TN
,
July 6–8
, p.
3591
.
10.
Bianchi
,
D.
, and
Nasuti
,
F.
,
2013
, “
Numerical Analysis of Nozzle Material Thermochemical Erosion in Hybrid Rocket Engines
,”
J. Propul. Power.
,
29
(
3
), pp.
547
558
.
11.
Mungiguerra
,
S.
,
Di Martino
,
G. D.
,
Savino
,
R.
,
Zoli
,
L.
,
Silvestroni
,
L.
, and
Sciti
,
D.
,
2020
, “
Characterization of Novel Ceramic Composites for Rocket Nozzles in High-Temperature Harsh Environments
,”
Int. J. Heat. Mass. Transfer.
,
163
, p.
120492
.
12.
Newton
,
R. A.
,
1966
, “
Free Vibrations of Rocket Nozzles
,”
AIAA. J.
,
4
(
7
), pp.
1303
1305
.
13.
Garelli
,
L.
,
Paz
,
R. R.
, and
Storti
,
M. A.
,
2010
, “
Fluid–Structure Interaction Study of the Start-Up of a Rocket Engine Nozzle
,”
Comput. Fluids
,
39
(
7
), pp.
1208
1218
.
14.
Zhao
,
X.
,
Bayyuk
,
S.
, and
Zhang
,
S.
,
2013
, “
Aeroelastic Response of Rocket Nozzles to Asymmetric Thrust Loading
,”
Comput. Fluids
,
76
, pp.
128
148
.
15.
Ignatius
,
J. K.
,
Venkata
,
R. V.
, and
Sathiyavageeswaran
,
S.
,
2020
, “
Investigation on the Vibration Response to High-Intensity Pressure Waves During a Solid Rocket Motor Operation
,”
Advances in Rotor Dynamics, Control, and Structural Health Monitoring: Select Proceedings of ICOVP 2017
,
Guwahati, India
,
Nov. 29–Dec. 2, 2017
, Springer, pp.
227
255
.
16.
Jack
,
S.
,
Oschwald
,
M.
, and
Eggers
,
T.
,
2023
, “
Mechanisms Contributing to the Dynamic Stability of a Flexible Subscale Rocket Nozzle
,”
J. Propul. Power.
,
40
, pp.
1
11
.
17.
Seiner
,
J. M.
, and
Gilinsky
,
M.
,
1997
, “
Nozzle Thrust Optimization While Reducing Jet Noise
,”
AIAA. J.
,
35
(
3
), pp.
420
427
.
18.
Ogawa
,
H.
, and
Boyce
,
R. R.
,
2012
, “
Nozzle Design Optimization for Axisymmetric Scramjets by Using Surrogate-Assisted Evolutionary Algorithms
,”
J. Propul. Power.
,
28
(
6
), pp.
1324
1338
.
19.
Liu
,
X.-Y.
,
Cheng
,
M.
,
Zhang
,
Y.-Z.
, and
Wang
,
J.-P.
,
2022
, “
Design and Optimization of Aerospike Nozzle for Rotating Detonation Engine
,”
Aerosp. Sci. Technol.
,
120
, p.
107300
.
20.
Ye
,
J.-G.
,
Xu
,
S.-S.
,
Huang
,
H.-F.
,
Zhao
,
Y.-J.
,
Zhou
,
W.
, and
Zhang
,
Y.-L.
,
2023
, “
Optimization Design of Nozzle Structure Inside Boiler Based on Orthogonal Design
,”
Processes
,
11
(
10
), p.
2923
.
21.
Patil
,
S.
,
2023
, “
Investigation of Nozzle Shape, Number of Nozzles and Nozzle Inclination Angle and Its Optimization
,”
Tuijin Jishu/J. Propul. Technol.
,
44
, pp.
1266
1279
.
22.
Wang
,
P.
, and
Yang
,
W.
,
2023
, “
Pneumatic Rotary Nozzle Structure Optimization Design and Airflow Characteristics Analysis
,”
Adv. Mech. Eng.
,
15
, pp.
1
15
.
23.
Chen
,
Q.-Y.
,
Gottlieb
,
D.
, and
Hesthaven
,
J. S.
,
2005
, “
Uncertainty Analysis for the Steady-State Flows in a Dual Throat Nozzle
,”
J. Comput. Phys.
,
204
(
1
), pp.
378
398
.
24.
Roy
,
C. J.
, and
Balch
,
M. S.
,
2012
, “
A Holistic Approach to Uncertainty Quantification With Application to Supersonic Nozzle Thrust
,”
Int. J. Uncert. Quantificat.
,
2
(
4
), pp.
363
381
.
25.
Xie
,
W.
,
Yang
,
Y.
,
Meng
,
S.
,
Peng
,
T.
,
Yuan
,
J.
,
Scarpa
,
F.
,
Xu
,
C.
, and
Jin
,
H.
,
2019
, “
Probabilistic Reliability Analysis of Carbon/carbon Composite Nozzle Cones With Uncertain Parameters
,”
J. Spacecr. Rockets
,
56
(
6
), pp.
1765
1774
.
26.
Yue
,
B.
,
Zhu
,
G.
,
Cao
,
X.
,
Qiao
,
S.
,
Guo
,
N.
, and
An
,
Y.
,
2021
, “
Uncertainty Analysis of the Influence of Delivery System Nozzle Structure on Fluid-Thermal Coupling in Casting Molten Pool
,”
Int. J. Mater. Forming
,
14
, pp.
593
605
.
27.
Talwalkar
,
A.
,
Kumar
,
S.
, and
Rowley
,
H.
,
2008
, “
Large-Scale Manifold Learning
,”
2008 IEEE Conference on Computer Vision and Pattern Recognition
,
Anchorage, AK
,
June 23–28
, IEEE, pp.
1
8
.
28.
Gorissen
,
D.
,
Couckuyt
,
I.
,
Demeester
,
P.
,
Dhaene
,
T.
, and
Crombecq
,
K.
,
2010
, “
A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design
,”
J. Mach. Learn. Res.
,
11
(
68
), pp.
2051
2055
.
29.
Öztireli
,
A. C.
,
Alexa
,
M.
, and
Gross
,
M.
,
2010
, “
Spectral Sampling of Manifolds
,”
ACM Trans. Graph. (TOG)
,
29
(
6
), pp.
1
8
.
30.
Transtrum
,
M.
, and
Qiu
,
P.
,
2014
, “
Model Reduction by Manifold Boundaries
,”
Phys. Rev. Lett.
,
113
, p.
098701
.
31.
Marzouk
,
Y.
,
Moselhy
,
T.
,
Parno
,
M.
, and
Spantini
,
A.
,
2016
, “Sampling Via Measure Transport: An Introduction,”
Handbook of Uncertainty Quantification
,
R.
Ghanem
,
D.
Higdon
and
H.
Owhadi
, eds., Springer, Cham, Switzerland, Vol. 2, Chapter 23, pp.
785
825
.
32.
Soize
,
C.
, and
Ghanem
,
R.
,
2016
, “
Data-Driven Probability Concentration and Sampling on Manifold
,”
J. Comput. Phys.
,
321
, pp.
242
258
.
33.
Parno
,
M. D.
, and
Marzouk
,
Y. M.
,
2018
, “
Transport Map Accelerated Markov Chain Monte Carlo
,”
SIAM/ASA J. Uncert. Quantificat.
,
6
(
2
), pp.
645
682
.
34.
Perrin
,
G.
,
Soize
,
C.
, and
Ouhbi
,
N.
,
2018
, “
Data-Driven Kernel Representations for Sampling With an Unknown Block Dependence Structure Under Correlation Constraints
,”
Comput. Stat. Data Anal.
,
119
, pp.
139
154
.
35.
Holiday
,
A.
,
Kooshkbaghi
,
M.
,
Bello-Rivas
,
J.
,
Gear
,
C.
,
Zagaris
,
A.
, and
Kevrekidis
,
Y.
,
2019
, “
Manifold Learning for Parameter Reduction
,”
J. Comput. Phys.
,
392
, pp.
419
431
.
36.
Azzi
,
M.-J.
,
Ghnatios
,
C.
,
Avery
,
P.
, and
Farhat
,
C.
,
2023
, “
Acceleration of a Physics-Based Machine Learning Approach for Modeling and Quantifying Model-Form Uncertainties and Performing Model Updating
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
1
), p.
011009
.
37.
Yousefpour
,
A.
,
Shishehbor
,
M.
,
Zanjani Foumani
,
Z.
, and
Bostanabad
,
R.
,
2023
, “
Unsupervised Anomaly Detection via Nonlinear Manifold Learning
,”
ASME J. Comput. Inf. Sci. Eng.
, pp.
1
37
.
38.
Soize
,
C.
, and
Ghanem
,
R.
,
2020
, “
Probabilistic Learning on Manifolds
,”
Found. Data Sci.
,
2
(
3
), pp.
279
307
.
39.
Soize
,
C.
, and
Ghanem
,
R.
,
2020
, “
Physics-Constrained Non-Gaussian Probabilistic Learning on Manifolds
,”
Int. J. Numer. Methods Eng.
,
121
(
1
), pp.
110
145
.
40.
Soize
,
C.
, and
Ghanem
,
R.
,
2023
, “
Probabilistic-Learning-Based Stochastic Surrogate Model From Small Incomplete Datasets for Nonlinear Dynamical Systems’
,”
Comput. Methods. Appl. Mech. Eng.
,
418
, p.
116498
.
41.
Ghanem
,
R.
, and
Soize
,
C.
,
2018
, “
Probabilistic Nonconvex Constrained Optimization With Fixed Number of Function Evaluations
,”
Int. J. Numer. Methods Eng.
,
113
(
4
), pp.
719
741
.
42.
Ghanem
,
R.
,
Soize
,
C.
,
Safta
,
C.
,
Huan
,
X.
,
Lacaze
,
G.
,
Oefelein
,
J. C.
, and
Najm
,
H. N.
,
2019
, “
Design Optimization of a Scramjet Under Uncertainty Using Probabilistic Learning on Manifolds
,”
J. Comput. Phys.
,
399
, p.
108930
.
43.
Capiez-Lernout
,
E.
, and
Soize
,
C.
,
2022
, “
Nonlinear Stochastic Dynamics of Detuned Bladed Disks With Uncertain Mistuning and Detuning Optimization Using a Probabilistic Machine Learning Tool
,”
Int. J. Non-Linear Mech.
,
143
, p.
104023
.
44.
Almeida
,
J. O.
, and
Rochinha
,
F. A.
,
2023
, “
A Probabilistic Learning Approach Applied to the Optimization of Wake Steering in Wind Farms
,”
J. Comput. Inf. Sci. Eng.
,
23
(
1
), p.
011003
.
45.
Farhat
,
C.
,
Tezaur
,
R.
,
Chapman
,
T.
,
Avery
,
P.
, and
Soize
,
C.
,
2019
, “
Feasible Probabilistic Learning Method for Model-Form Uncertainty Quantification in Vibration Analysis
,”
AIAA. J.
,
57
(
11
), pp.
4978
4991
.
46.
Safta
,
C.
,
Ghanem
,
R. G.
,
Grant
,
M. J.
,
Sparapany
,
M.
, and
Najm
,
H. N.
,
2022
, “
Trajectory Design via Unsupervised Probabilistic Learning on Optimal Manifolds
,”
Data-Centric Eng.
,
3
, p.
e26
.
47.
Ezvan
,
O.
,
Soize
,
C.
,
Desceliers
,
C.
, and
Ghanem
,
R.
,
2023
, “
Updating an Uncertain and Expensive Computational Model in Structural Dynamics Based on One Single Target Frf Using a Probabilistic Learning Tool
,”
Comput. Mech.
,
71
, pp.
1161
1177
.
48.
Zhong
,
K.
,
Navarro
,
J. G.
,
Govindjee
,
S.
, and
Deierlein
,
G. G.
,
2023
, “
Surrogate Modeling of Structural Seismic Response Using Probabilistic Learning on Manifolds
,”
Earthq. Eng. Struct. Dyn.
,
52
(
8
), pp.
2407
2428
.
49.
Doob
,
J. L.
,
1953
,
Stochastic Processes
,
John Wiley & Sons
,
New York
.
50.
Guikhman
,
I. I.
, and
Skorokhod
,
A.
,
1980
,
Introduction à La Théorie Des Processus Aléatoires
,
Edition Mir
,
Moscou
.
51.
Krée
,
P.
, and
Soize
,
C.
,
1986
,
Mathematics of Random Phenomena
,
Reidel Pub. Co
,
Dordrecht
.
52.
Soize
,
C.
,
2017
,
Uncertainty Quantification. An Accelerated Course With Advanced Applications in Computational Engineering
,
Springer
,
New York
.
53.
Soize
,
C.
,
2023
, “
An Overview on Uncertainty Quantification and Probabilistic Learning on Manifolds in Multiscale Mechanics of Materials
,”
Math. Mech. Complex Syst.
,
11
(
1
), pp.
87
174
.
54.
Leissa
,
A.
,
1973
,
Vibration of Shells
,
Acoustic Society of America, Publications on Acoustics
. (Originally Published in 1973, NASA SP-288).
55.
Ohayon
,
R.
, and
Soize
,
C.
,
1998
,
Structural Acoustics and Vibration: Mechanical Models, Variational Formulations and Discretization
,
Academic Press
,
San Diego, London
.
56.
Bathe
,
K. J.
, and
Wilson
,
E. L.
,
1976
,
Numerical Methods in Finite Element Analysis
,
Prentice-Hall
,
New York
.
57.
Capiez-Lernout
,
E.
,
Soize
,
C.
, and
Mbaye
,
M.
,
2015
, “
Mistuning Analysis and Uncertainty Quantification of an Industrial Bladed Disk With Geometrical Nonlinearity
,”
J. Sound Vib.
,
356
(
10
), pp.
124
143
.
58.
Crisfield
,
M.
,
1997
,
Non-Linear Finite Element Analysis of Solids and Structures, Vol.1: Essentials
,
John Wiley and Sons
,
Chichester
.
59.
De Borst
,
R.
,
Crisfield
,
M.
,
Remmers
,
J.
, and
Verhoosel
,
C. V.
,
2012
,
Non-Linear Finite Element Analysis of Solids and Structures
, 2nd edn,
Wiley
.
60.
Capiez-Lernout
,
E.
,
Soize
,
C.
, and
Mignolet
,
M.-P.
,
2014
, “
Post-buckling Nonlinear Static and Dynamical Analyses of Uncertain Cylindrical Shells and Experimental Validation
,”
Comput. Methods. Appl. Mech. Eng.
,
271
, pp.
210
230
.
61.
Capiez-Lernout
,
E.
, and
Soize
,
C.
,
2017
, “
An Improvement of the Uncertainty Quantification in Computational Structural Dynamics With Nonlinear Geometrical Effects
,”
Int. J. Uncert. Quantif.
,
7
(
1
), pp.
83
98
.
62.
Picou
,
A.
,
Capiez-Lernout
,
E.
,
Soize
,
C.
, and
Mbaye
,
M.
,
2020
, “
Robust Dynamic Analysis of Detuned-Mistuned Rotating Bladed Disks With Geometric Nonlinearities
,”
Comput. Mech.
,
65
(
3
), pp.
711
730
.
63.
O’Leary
,
R.
, and
Beck
,
J.
,
1992
,
Boeing Engineering, Spring 1992 Issue
.
64.
Hillegass
,
C.
,
2020
,
Rocket Motor Nozzle
,
Williams Honors College, Honors Research Projects 1135
.
65.
Tam
,
C.
,
1998
, “
Jet Noise: Since 1952
,”
Theoret. Comput. Fluid Dyn.
,
10
, pp.
393
405
.
66.
Shinozuka
,
M.
,
1971
, “
Simulation of Multivariate and Multidimensional Random Processes
,”
J. Acoust. Soc. Am.
,
49
(
1B
), pp.
357
368
.
67.
Poirion
,
F.
, and
Soize
,
C.
,
1995
, “
Numerical Methods and Mathematical Aspects for Simulation of Homogeneous and Non Homogeneous Gaussian Vector Fields
,”
Probabilistic Methods in Applied Physics
,
P.
Krée
and
W.
Wedig
, eds.
Springer-Verlag, Berlin
, pp.
17
53
.
68.
Soize
,
C.
,
2023
, “
Probabilistic Learning Constrained by Realizations Using a Weak Formulation of Fourier Transform of Probability Measures
,”
Comput. Stat.
,
38
(
4
), pp.
1879
1925
.
69.
Soize
,
C.
, and
Ghanem
,
R.
,
2022
, “
Probabilistic Learning on Manifolds (PLoM) With Partition
,”
Int. J. Numer. Methods Eng.
,
123
(
1
), pp.
268
290
.
70.
Bowman
,
A.
, and
Azzalini
,
A.
,
1997
,
Applied Smoothing Techniques for Data Analysis: The Kernel Approach With S-Plus Illustrations
, Vol.
18
,
Oxford University Press/Clarendon Press
,
Oxford/New York
.
71.
Coifman
,
R.
,
Lafon
,
S.
,
Lee
,
A.
,
Maggioni
,
M.
,
Nadler
,
B.
,
Warner
,
F.
, and
Zucker
,
S.
,
2005
, “
Geometric Diffusions as a Tool for Harmonic Analysis and Structure Definition of Data: Diffusion Maps
,”
Proc. Nat. Acad. Sci.
,
102
(
21
), pp.
7426
7431
.
72.
Kullback
,
S.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
(
1
), pp.
79
86
.
73.
Kapur
,
J. N.
, and
Kesavan
,
H. K.
,
1992
,
Entropy Optimization Principles With Applications
,
Academic Press
,
San Diego, CA
.
74.
Cover
,
T. M.
, and
Thomas
,
J. A.
,
2006
,
Elements of Information Theory
, 2nd ed.,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.