Abstract

Metal powder bed fusion additive manufacturing (AM) processes have gained widespread adoption for the ability to produce complex geometries with high performance. However, a multitude of factors still affect the build process, which significantly impacts the adoption rate. This, in turn, leads to great challenges in achieving consistent and reliable part quality. To address this challenge, simulations and measurements have been progressively deployed to provide valuable insights into the quality of individual builds. This paper proposes an AM data fusion framework that combines data sources beyond a single-part, development cycle. Those sources include the aggregation of measurements from multiple builds and the outputs from their related models and simulations. Both can be used to support decision-makings that can improve part quality. The effectiveness of the holistic AM data fusion framework is illustrated through three use case scenarios: one that fuses process data from a single build, one that fusses data from a build and simulation, and one that fuses data from multiple builds. The case studies demonstrate that a data fusion framework can be applied to effectively detect over-melting scan strategies, monitor material melting conditions, and predict down-skin surface defects. Overall, the proposed method provides a practical solution for enhancing part quality management when individual data sources or models have intrinsic limitations.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
2.
Zhang
,
C.
,
Chen
,
F.
,
Huang
,
Z.
,
Jia
,
M.
,
Chen
,
G.
,
Ye
,
Y.
,
Lin
,
Y.
, et al
,
2019
, “
Additive Manufacturing of Functionally Graded Materials: A Review
,”
Mater. Sci. Eng. A
,
764
, p.
138209
.
3.
McCann
,
R.
,
Obeidi
,
M. A.
,
Hughes
,
C.
,
McCarthy
,
É
,
Egan
,
D. S.
,
Vijayaraghavan
,
R. K.
,
Joshi
,
A. M.
, et al
,
2021
, “
In-Situ Sensing, Process Monitoring and Machine Control in Laser Powder Bed Fusion: A Review
,”
Addit. Manuf.
,
45
, p.
102058
.
4.
Williams
,
G.
,
Meisel
,
N. A.
,
Simpson
,
T. W.
, and
McComb
,
C.
,
2022
, “
Analyzing Expert Design Cost Estimation for Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, St. Louis, MO, Aug. 14–17,
American Society of Mechanical Engineers
, Vol.
86229
, p.
V03AT03A032
.
5.
Yan
,
W.
,
Lu
,
Y.
,
Jones
,
K.
,
Yang
,
Z.
,
Fox
,
J.
,
Witherell
,
P.
,
Wagner
,
G.
, and
Liu
,
W. K.
,
2020
, “
Data-Driven Characterization of Thermal Models for Powder-Bed-Fusion Additive Manufacturing
,”
Addit. Manuf.
,
36
, pp.
101503
.
6.
Jones
,
K.
,
Yang
,
Z.
,
Yeung
,
H.
,
Witherell
,
P.
, and
Lu
,
Y.
,
2021
, “
Hybrid Modeling of Melt Pool Geometry in Additive Manufacturing Using Neural Networks
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online, Aug. 17–19, American Society of Mechanical Engineers
, Vol.
85376
, p.
V002T02A031
.
7.
Zhang
,
W.
,
Tong
,
M.
, and
Harrison
,
N. M.
,
2020
, “
Scanning Strategies Effect on Temperature, Residual Stress and Deformation by Multi-Laser Beam Powder Bed Fusion Manufacturing
,”
Addit. Manuf.
,
36
, p.
101507
.
8.
Yan
,
W.
,
Ge
,
W.
,
Qian
,
Y.
,
Lin
,
S.
,
Zhou
,
B.
,
Liu
,
W. K.
,
Lin
,
F.
, and
Wagner
,
G. J.
,
2017
, “
Multi-Physics Modeling of Single/Multiple-Track Defect Mechanisms in Electron Beam Selective Melting
,”
Acta Mater.
,
134
, pp.
324
333
.
9.
Yeung
,
H.
,
Yang
,
Z.
, and
Yan
,
L.
,
2020
, “
A Meltpool Prediction Based Scan Strategy for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
35
, p.
101383
.
10.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2020
, “
From Scan Strategy to Melt Pool Prediction: A Neighboring-Effect Modeling Method
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
051001
.
11.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Kirshnamurty
,
S.
,
2020
, “
3D Build Melt Pool Predictive Modeling for Powder Bed Fusion Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online, Aug. 17–19, American Society of Mechanical Engineers
, Vol.
83983
, p.
V009T09A046
.
12.
Milaat
,
F. A.
,
Yang
,
Z.
,
Ko
,
H.
, and
Jones
,
A. T.
,
2021
, “
Prediction of Melt Pool Geometry Using Deep Neural Networks
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online, Aug. 17–19, American Society of Mechanical Engineers
, Vol.
85376
, p.
V002T02A037
.
13.
Yang
,
Z.
,
Adnan
,
M.
,
Lu
,
Y.
,
Cheng
,
F. T.
,
Yang
,
H. C.
,
Perisic
,
M.
, and
Ndiaye
,
Y.
,
2022
, “
Investigating Statistical Correlation Between Multi-Modality In-Situ Monitoring Data for Powder Bed Fusion Additive Manufacturing
,”
2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)
,
Mexico City, Mexico, Aug. 20–24, IEEE
, pp.
283
290
.
14.
Hall
,
D. L.
, and
Llinas
,
J.
,
1997
, “
An Introduction to Multisensor Data Fusion
,”
Proc. IEEE
,
85
(
1
), pp.
6
23
.
15.
Waltz
,
E.
, and
Llinas
,
J.
,
1990
,
Multisensor Data Fusion
,
Artech house
,
Boston
.
16.
Ríos-Reina
,
R.
,
Azcarate
,
S. M.
,
Camiña
,
J. M.
, and
Goicoechea
,
H. C.
,
2020
, “
Multi-Level Data Fusion Strategies for Modeling Three-Way Electrophoresis Capillary and Fluorescence Arrays Enhancing Geographical and Grape Variety Classification of Wines
,”
Anal. Chim. Acta
,
1126
, pp.
52
62
.
17.
Yang
,
Z.
,
Lu
,
Y.
,
Li
,
S.
,
Li
,
J.
,
Ndiaye
,
Y.
,
Yang
,
H.
, and
Krishnamurty
,
S.
,
2021
, “
In-Process Data Fusion for Process Monitoring and Control of Metal Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Virtual, Online, Aug. 17–19,
American Society of Mechanical Engineers
, Vol.
85376
, p.
V002T02A072
.
18.
Lane
,
B.
,
Yeung
,
H.
, and
Yang
,
Z.
, “
Statistical and Spatio-Temporal Data Features in Melt Pool Monitoring of Additive Manufacturing
,” IISE Annual Conference, Seattle, WA, May 21–24.
19.
Ko
,
H.
,
Kim
,
J.
,
Lu
,
Y.
,
Shin
,
D.
,
Yang
,
Z.
, and
Oh
,
Y.
,
2022
, “
Spatial-Temporal Modeling Using Deep Learning for Real-Time Monitoring of Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO, Aug. 14–17, American Society of Mechanical Engineers
, Vol.
86212
, p.
V002T02A019
.
20.
Pandiyan
,
V.
,
Drissi-Daoudi
,
R.
,
Shevchik
,
S.
,
Masinelli
,
G.
,
Le-Quang
,
T.
,
Logé
,
R.
, and
Wasmer
,
K.
,
2022
, “
Deep Transfer Learning of Additive Manufacturing Mechanisms Across Materials in Metal-Based Laser Powder Bed Fusion Process
,”
J. Mater. Process. Technol.
,
303
, pp.
117531
.
21.
Yeung
,
H.
,
Lane
,
B. M.
,
Donmez
,
M. A.
,
Fox
,
J. C.
, and
Neira
,
J.
,
2018
, “
Implementation of Advanced Laser Control Strategies for Powder Bed Fusion Systems
,”
Procedia Manuf.
,
26
, pp.
871
879
.
22.
Lane
,
B.
,
Mekhontsev
,
S.
,
Grantham
,
S.
,
Vlasea
,
M. L.
,
Whiting
,
J.
,
Yeung
,
H.
,
Fox
,
J.
, et al
,
2016
, “
Design, Developments, and Results From the NIST Additive Manufacturing Metrology Testbed (AMMT)
,”
2016 International Solid Freeform Fabrication Symposium
,
University of Texas at Austin, Austin, TX, Aug. 8–10
.
23.
Lane
,
B.
, and
Yeung
,
H.
,
2020
, “
Process Monitoring Dataset From the Additive Manufacturing Metrology Testbed (Ammt): Overhang Part X4
,”
J. Res. Natl. Inst. Stand. Technol.
,
125
, pp.
1
18
.
24.
Lane
,
B.
, and
Yeung
,
H.
,
2019
, “
Process Monitoring Dataset From the Additive Manufacturing Metrology Testbed (AMMT): ‘Three-Dimensional Scan Strategies
,’”
J. Res. Natl. Inst. Stand. Technol.
,
124
, pp.
1
.
25.
Yang
,
Z.
,
Eddy
,
D.
,
Krishnamurty
,
S.
,
Grosse
,
I.
,
Denno
,
P.
,
Lu
,
Y.
, and
Witherell
,
P.
,
2017
, “
Investigating Grey-Box Modeling for Predictive Analytics in Smart Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH, Aug. 6–9, American Society of Mechanical Engineers
, Vol.
58134
, p.
V02BT03A024
.
26.
Moges
,
T.
,
Yang
,
Z.
,
Jones
,
K.
,
Feng
,
S.
,
Witherell
,
P.
, and
Lu
,
Y.
,
2021
, “
Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
5
), p. 050902.
27.
Praniewicz
,
M.
,
Lane
,
B.
,
Kim
,
F.
, and
Saldana
,
C.
,
2020
, “
X-Ray Computed Tomography Data of Additive Manufacturing Metrology Testbed (AMMT) Parts: ‘Overhang Part X4
,’”
J. Res. Natl. Inst. Stand. Technol.
,
125
, pp.
1
9
.
28.
Criales
,
L. E.
,
Arısoy
,
Y. M.
,
Lane
,
B.
,
Moylan
,
S.
,
Donmez
,
A.
, and
Özel
,
T.
,
2017
, “
Laser Powder Bed Fusion of Nickel Alloy 625: Experimental Investigations of Effects of Process Parameters on Melt Pool Size and Shape With Spatter Analysis
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
22
36
.
29.
Charles
,
A.
,
Bayat
,
M.
, and
Elkaseer
,
A.
,
2022
, “
Elucidation of Dross Formation in Laser Powder Bed Fusion at Down-Facing Surfaces: Phenomenon-Oriented Multiphysics Simulation and Experimental Validation
,”
Addit. Manuf.
,
50
, pp.
102551
.
30.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME J. Mech. Des.
,
138
(
11
), p. 114502.
You do not currently have access to this content.