Abstract

Segmentation of anatomical components is a major step in creating accurate and realistic 3D models of the human body, which are used in many clinical applications, including orthopedics. Recently, many deep learning approaches have been proposed to solve the problem of manual segmentation, which is time-consuming and operator-dependent. In the present study, SegResNet has been adapted from other domains, such as brain tumors, for knee joints, in particular, to segment the femoral bone from magnetic resonance images. This algorithm has been compared to the well-known U-Net in terms of evaluation metrics, such as the Dice similarity coefficient and Hausdorff distance. In the training phase, various combinations of hyperparameters, such as epochs and learning rates, have been tested to determine which combination produced the most accurate results. Based on their comparable results, both U-Net and SegResNet performed well in accurately segmenting the femur. Dice similarity coefficients of 0.94 and Hausdorff distances less than or equal to 1 mm indicate that both models are effective at capturing anatomical boundaries in the femur. According to the results of this study, SegResNet is a viable option for automating the creation of 3D femur models. In the future, the performance and applicability of SegResNet in real-world settings will be further validated and tested using a variety of datasets and clinical scenarios.

References

1.
Hatamizadeh
,
A.
,
Tang
,
Y.
,
Nath
,
V.
,
Yang
,
D.
,
Myronenko
,
A.
,
Landman
,
B.
,
Roth
,
H. R.
, and
Xu
,
D.
,
2022
, “
UNETR: Transformers for 3D Medical Image Segmentation
,”
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
,
Waikoloa, HI
,
Jan. 4–8
, pp.
574
584
.
2.
Marsilio
,
L.
,
Faglia
,
A.
,
Rossi
,
M.
,
Mainardi
,
L.
,
Manzotti
,
A.
, and
Cerveri
,
P.
,
2022
, “
CEL-Unet: A Novel CNN Architecture for 3D Segmentation of Knee Bones Affected by Severe Osteoarthritis for PSI-Based Surgical Planning
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Glasgow, UK
,
July 11–15
, pp.
5039
5042
.
3.
Ghidotti
,
A.
,
Landi
,
D.
,
Regazzoni
,
D.
, and
Rizzi
,
C.
,
2022
, “
Evaluation of Clinical and Technical Parameters to Customize Total Knee Arthroplasty Implants
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
6
), p.
061006
.
4.
Isaksson
,
L .J.
,
Pepa
,
M.
,
Summers
,
P.
,
Zaffaroni
,
M.
,
Vincini
,
M. G.
,
Corrao
,
G.
,
Mazzola
,
G. C.
, et al
,
2023
, “
Comparison of Automated Segmentation Techniques for Magnetic Resonance Images of the Prostate
,”
BMC Med. Imaging
,
23
(
32
).
5.
Liu
,
L.
,
Cheng
,
J.
,
Quan
,
Q.
,
Wu
,
F. X.
,
Wang
,
Y. P.
, and
Wang
,
J.
,
2020
, “
A Survey on U-Shaped Networks in Medical Image Segmentations
,”
Neurocomputing
,
409
, pp.
244
258
.
6.
Williams
,
G.
,
Meisel
,
N. A.
,
Simpson
,
T. W.
, and
McComb
,
C.
,
2022
, “
Design for Artificial Intelligence: Proposing a Conceptual Framework Grounded in Data Wrangling
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
6
), p.
060903
.
7.
Deng
,
J.
,
Wei
,
H.
,
Lai
,
Z.
,
Gu
,
G.
,
Chen
,
Z.
,
Chen
,
L.
, and
Ding
,
L.
,
2023
, “
Spatial Transform Depthwise Over-Parameterized Convolution Recurrent Neural Network for License Plate Recognition in Complex Environment
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
1
), p.
011010
.
8.
Liu
,
X.
,
Song
,
L.
,
Liu
,
S.
, and
Zhang
,
Y.
,
2021
, “
A Review of Deep-Learning-Based Medical Image Segmentation Methods
,”
Sustainability
,
13
(
3
), p.
1224
.
9.
Dao
,
L.
, and
Ly
,
N. Q.
,
2023
, “
A Comprehensive Study on Medical Image Segmentation Using Deep Neural Networks
,”
Int. J. Adv. Comput. Sci. Appl.
,
14
(
3
), pp.
167
184
.
10.
Çiçek
,
Ö
,
Abdulkadir
,
A.
,
Lienkamp
,
S. S.
,
Brox
,
T.
, and
Ronneberger
,
O.
,
2016
, “3D U-Net: Learning Dense Volumetric Segmentation From Sparse Annotation,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016. Lecture Notes in Computer Science
,
S.
Ourselin
,
L.
Joskowicz
,
M.
Sabuncu
,
G.
Unal
, and
W.
Wells
, eds., vol. 9901, pp.
424
432
.
11.
Dou
,
Q.
,
Yu
,
L.
,
Chen
,
H.
,
Jin
,
Y.
,
Yang
,
X.
,
Qin
,
J.
, and
Heng
,
P. A.
,
2017
, “
3D Deeply Supervised Network for Automated Segmentation of Volumetric Medical Images
,”
Med. Image Anal.
,
41
, pp.
40
54
.
12.
Wang
,
C.
,
MacGillivray
,
T.
,
Macnaught
,
G.
,
Yang
,
G.
, and
Newby
,
D.
,
2019
, “
A Two-Stage U-Net Model for 3D Multi-Class Segmentation on Full-Resolution Cardiac Data
,”
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges: 9th International Workshop, STACOM 2018 in Conjunction with MICCAI 2018
,
Granada, Spain
,
Sept. 16, 2018
, Springer International Publishing, Revised Selected Papers 9, pp.
191
199
.
13.
Zhao
,
C.
,
Han
,
J.
,
Jia
,
Y.
, and
Gou
,
F.
,
2018
, “
Lung Nodule Detection via 3D U-Net and Contextual Convolutional Neural Network
,”
Proceedings of the 2018 International Conference on Networking and Network Applications
,
Xi'an, China
,
Oct. 12–15
, pp.
356
361
.
14.
Myronenko
,
A.
,
2019
, “
3D MRI Brain Tumor Segmentation Using Autoencoder Regularization
,”
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, in Conjunction with MICCAI 2018
,
Granada, Spain
,
Sept. 16, 2018
, Springer International Publishing, Revised Selected Papers, Part II 4, pp.
311
320
.
15.
Zhou
,
L.
, and
Li
,
Z.
,
2023
, “
Automatic Multi-Label Temporal Bone Computed Tomography Segmentation With Deep Learning
,”
Int. J. Med. Rob.
,
19
(
5
), p.
e2536
.
16.
Ambellan
,
F.
,
Tack
,
A.
,
Ehlke
,
M.
, and
Zachow
,
S.
,
2019
, “
Automated Segmentation of Knee Bone and Cartilage Combining Statistical Shape Knowledge and Convolutional Neural Networks: Data From the Osteoarthritis Initiative
,”
Med. Image Anal.
,
52
, pp.
109
118
.
17.
Zhou
,
Z.
,
Zhao
,
G.
,
Kijowski
,
R.
, and
Liu
,
F.
,
2018
, “
Deep Convolutional Neural Network for Segmentation of Knee Joint Anatomy
,”
Magn. Reson. Med.
,
80
(
6
), pp.
2759
2770
.
18.
Griffin
,
F. M.
,
Math
,
K.
,
Scuderi
,
G. R.
,
Insall
,
J. N.
, and
Poilvache
,
P. L.
,
2000
, “
Anatomy of the Epicondyles of the Distal Femur: MRI Analysis of Normal Knees
,”
J. Arthroplasty
,
15
(
3
), pp.
354
359
.
19.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference
,
Munich, Germany
,
Oct. 5–9
, Proceedings, Part III 18, pp. 234–241, Springer International Publishing.
20.
Awan
,
M. J.
,
Rahim
,
M. S. M.
,
Salim
,
N.
,
Rehman
,
A.
, and
Garcia-Zapirain
,
B.
,
2022
, “
Automated Knee MR Images Segmentation of Anterior Cruciate Ligament Tears
,”
Sensors
,
22
(
4
), p.
1552
.
21.
Chen
,
H.
,
Zhao
,
N.
,
Tan
,
T.
,
Kang
,
Y.
,
Sun
,
C.
,
Xie
,
G.
,
Verdonschot
,
N.
, and
Sprengers
,
A.
,
2022
, “
Knee Bone and Cartilage Segmentation Based on a 3D Deep Neural Network Using Adversarial Loss for Prior Shape Constraint
,”
Front. Med.
,
9
, p.
1304
.
22.
Pröve
,
P. L.
,
Jopp-van Well
,
E.
,
Stanczus
,
B.
,
Morlock
,
M. M.
,
Herrmann
,
J.
,
Growth
,
M.
,
Säring
,
D.
, and
Auf der Mauer
,
M.
,
2019
, “
Automated Segmentation of the Knee for Age Assessment in 3D MR Images Using Convolutional Neural Networks
,”
Int. J. Legal Med.
,
133
(
4
), pp.
1191
1205
.
23.
Robert
,
B.
, and
Boulanger
,
P.
,
2022
, “
Automatic Bone Segmentation From MRI for Real-Time Knee Tracking in Fluoroscopic Imaging
,”
Diagnostics
,
12
(
9
), p.
2228
.
24.
Perslev
,
M.
,
Pai
,
A.
,
Runhaar
,
J.
,
Igel
,
C.
, and
Dam
,
E. B.
,
2022
, “
Cross-Cohort Automatic Knee MRI Segmentation With Multi-Planar U-Nets
,”
J. Magn. Reson. Imaging
,
55
(
6
), pp.
1650
1663
.
25.
Tang
,
X.
,
Guo
,
D.
,
Liu
,
A.
,
Wu
,
D.
,
Liu
,
J.
,
Xu
,
N.
, and
Qin
,
Y.
,
2022
, “
Fully Automatic Knee Joint Segmentation and Quantitative Analysis for Osteoarthritis From Magnetic Resonance (MR) Images Using a Deep Learning Model
,”
Med. Sci. Monit.
,
28
, pp.
e936733
.
26.
Li
,
M.
,
Bai
,
H.
,
Zhang
,
F.
,
Zhou
,
Y.
,
Lin
,
Q.
,
Zhou
,
Q.
,
Feng
,
Q.
, and
Zhang
,
L.
,
2022
, “
Automatic Segmentation Model of Intercondylar Fossa Based on Deep Learning: A Novel and Effective Assessment Method for the Notch Volume
,”
BMC Musculoskeletal Disord.
,
23
(
1
), pp.
1
10
.
27.
Kulseng
,
C. P. S.
,
Nainamalai
,
V.
,
Grøvik
,
E.
,
Geitung
,
J. T.
,
Årøen
,
A.
, and
Gjesdal
,
K. I.
,
2023
, “
Automatic Segmentation of Human Knee Anatomy by a Convolutional Neural Network Applying a 3D MRI Protocol
,”
BMC Musculoskeletal Disord.
,
24
(
1
), pp.
1
12
.
28.
Castillo
,
D.
,
Cueva
,
J.
,
Díaz
,
P.
, and
Lakshminarayanan
,
V.
,
2023
, “Diagnostic Value of Knee Osteoarthritis Through Self-Learning,”
I+ D for Smart Cities and Industry. RITAM 2021. Lecture Notesin Networks and Systems
,
M.
Zambrano Vizuete
,
M.
Botto-Tobar
,
A.
Diaz Cadena
, and
A.
Zambrano Vizuete
, eds., vol 512, Springer
29.
Liu
,
W.
,
Ge
,
T.
,
Luo
,
L.
,
Peng
,
H.
,
Xu
,
X.
,
Chen
,
Y.
, and
Zhuang
,
Z.
,
2022
, “
A Novel Focal Ordinal Loss for Assessment of Knee Osteoarthritis Severity
,”
Neural Process. Lett.
,
54
(
6
), pp.
5199
5224
.
30.
Revathi
,
S. A.
,
Sathish
,
B. B.
, and
Subramanya
,
K. N.
,
2022
, “
Deep Learning Approach for Segmenting and Classifying Knee Osteoarthritis Using MR Images
,”
Proceedings of the 3rd International Conference on Artificial Intelligence: Advances and Applications
,
Jaipur, India
,
Apr. 23–24
, pp.
209
221
.
31.
Kamkova
,
Y.
,
Pelanis
,
E.
,
Bjørnerud
,
A.
,
Edwin
,
B.
,
Elle
,
O. J.
, and
Kumar
,
R. P.
,
2022
, “
A Fast Method for Whole Liver- and Colorectal Liver Metastasis Segmentations From MRI Using 3D FCNN Networks
,”
Appl. Sci.
,
12
(
10
), p.
5145
.
32.
Diaz-Pinto
,
A.
,
Alle
,
S.
,
Nath
,
V.
,
Tang
,
Y.
,
Ihsani
,
A.
,
Asad
,
M.
,
Pérez-García
,
F.
, et al
,
2022
, “
MONAI Label: A Framework for AI-Assisted Interactive Labeling of 3D Medical Images
,” arXiv preprint arXiv:2203.12362.
33.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J. C.
,
Pujol
,
S.
,
Bauer
,
C.
, et al
,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging
,
30
(
9
), pp.
1323
1341
.
34.
Siddique
,
N.
,
Paheding
,
S.
,
Elkin
,
C. P.
, and
Devabhaktuni
,
V.
,
2021
, “
U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications
,”
IEEE Access
,
9
, pp.
82031
82057
.
35.
Falk
,
T.
,
Mai
,
D.
,
Bensch
,
R.
,
Çiçek
,
Ö
,
Abdulkadir
,
A.
,
Marrakchi
,
Y.
,
Böhm
,
A.
, et al
,
2019
, “
U-Net: Deep Learning for Cell Counting, Detection, and Morphometry
,”
Nat. Methods
,
16
(
1
), pp.
67
70
.
36.
Wu
,
Z.
,
Shen
,
C.
, and
van den Hengel
,
A.
,
2019
, “
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition
,”
Pattern Recognit.
,
90
, pp.
119
133
.
37.
Sim
,
K. S.
,
Nia
,
M. E.
,
Tso
,
C. P.
, and
Kho
,
T. K.
,
2016
, “Chapter 34—Brain Ventricle Detection Using Hausdorff Distance,”
Emerging Trends in Applications and Infrastructures for Computational Biology, Bioinformatics, and Systems Biology: Systems and Applications
,
Q. N.
Tran
and
H. R.
Arabnia
, eds.,
Morgan Kaufmann
,
Boston, MA
, pp.
523
531
.
You do not currently have access to this content.