Abstract

Human intention prediction plays a critical role in human–robot collaboration, as it helps robots improve efficiency and safety by accurately anticipating human intentions and proactively assisting with tasks. While current applications often focus on predicting intent once human action is completed, recognizing human intent in advance has received less attention. This study aims to equip robots with the capability to forecast human intent before completing an action, i.e., early intent prediction. To achieve this objective, we first extract features from human motion trajectories by analyzing changes in human joint distances. These features are then utilized in a Hidden Markov Model (HMM) to determine the state transition times from uncertain intent to certain intent. Second, we propose two models including a Transformer and a Bi-LSTM for classifying motion intentions. Then, we design a human–robot collaboration experiment in which the operator reaches multiple targets while the robot moves continuously following a predetermined path. The data collected through the experiment were divided into two groups: full-length data and partial data before state transitions detected by the HMM. Finally, the effectiveness of the suggested framework for predicting intentions is assessed using two different datasets, particularly in a scenario when motion trajectories are similar but underlying intentions vary. The results indicate that using partial data prior to the motion completion yields better accuracy compared to using full-length data. Specifically, the transformer model exhibits a 2% improvement in accuracy, while the Bi-LSTM model demonstrates a 6% increase in accuracy.

References

1.
Kaipa
,
K. N.
,
Morato
,
C. W.
, and
Gupta
,
S. K.
,
2018
, “
Design of Hybrid Cells to Facilitate Safe and Efficient Human–Robot Collaboration During Assembly Operations
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p.
031004
.
2.
Bhatt
,
P. M.
,
Kulkarni
,
A.
,
Malhan
,
R. K.
,
Shah
,
B. C.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2021
, “
Automated Planning for Robotic Multi-Resolution Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021006
.
3.
Stulp
,
F.
,
Grizou
,
J.
,
Busch
,
B.
, and
Lopes
,
M.
,
2015
, “
Facilitating Intention Prediction for Humans by Optimizing Robot Motions
,”
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
1249
1255
.
4.
Petković
,
T.
,
Puljiz
,
D.
,
Marković
,
I.
, and
Hein
,
B.
,
2019
, “
Human Intention Estimation Based on Hidden Markov Model Motion Validation for Safe Flexible Robotized Warehouses
,”
Rob. Comput. Integr. Manuf.
,
57
, pp.
182
196
.
5.
Losey
,
D. P.
,
McDonald
,
C. G.
,
Battaglia
,
E.
, and
O'Malley
,
M. K.
,
2018
, “
A Review of Intent Detection, Arbitration, and Communication Aspects of Shared Control for Physical Human–Robot Interaction
,”
ASME Appl. Mech. Rev.
,
70
(
1
).
6.
Manns
,
M.
,
Tuli
,
T. B.
, and
Schreiber
,
F.
,
2021
, “
Identifying Human Intention During Assembly Operations Using Wearable Motion Capturing Systems Including Eye Focus
,”
Proc. CIRP
,
104
, pp.
924
929
.
7.
Gajjar
,
N. K.
,
Rekik
,
K.
,
Kanso
,
A.
, and
Müller
,
R.
,
2022
, “
Human Intention and Workspace Recognition for Collaborative Assembly
,”
IFAC-PapersOnLine
,
55
(
10
), pp.
365
370
.
8.
Nahavandi
,
S.
,
2019
, “
Industry 5.0-A Human-Centric Solution
,”
Sustainability
,
11
(
16
), p.
4371
.
9.
Zhang
,
D.
,
Yao
,
L.
,
Chen
,
K.
,
Wang
,
S.
,
Chang
,
X.
, and
Liu
,
Y.
,
2019
, “
Making Sense of Spatio-Temporal Preserving Representations for EEG-Based Human Intention Recognition
,”
IEEE Trans. Cybern.
,
50
(
7
), pp.
3033
3044
.
10.
Jain
,
S.
,
Argall
,
B.
,
Abilitylab
,
S. R.
,
Jain
,
S.
, and
Argall
,
B.
,
2019
, “
Probabilistic Human Intent Recognition for Shared Autonomy in Assistive Robotics
,”
ACM Trans. Human-Rob. Interact. (THRI)
,
9
(
1
), pp.
1
23
.
11.
Huang
,
H.
,
Zeng
,
Z.
,
Yao
,
D.
,
Pei
,
X.
, and
Zhang
,
Y.
,
2021
, “
Spatial-Temporal ConvLSTM for Vehicle Driving Intention Prediction
,”
Tsinghua Sci. Technol.
,
27
(
3
), pp.
599
609
.
12.
Yang
,
D.
,
Zhang
,
H.
,
Yurtsever
,
E.
,
Redmill
,
K. A.
, and
Özgüner
,
Ü.
,
2022
, “
Predicting Pedestrian Crossing Intention With Feature Fusion and Spatio-Temporal Attention
,”
IEEE Trans. Intell. Vehicles
,
7
(
2
), pp.
221
230
.
13.
Zhou
,
T.
,
Chen
,
M.
,
Wang
,
Y.
,
He
,
J.
, and
Yang
,
C.
,
2020
, “
Information Entropy-Based Intention Prediction of Aerial Targets Under Uncertain and Incomplete Information
,”
Entropy
,
22
(
3
), p.
279
.
14.
Wang
,
W.
,
Li
,
R.
,
Chen
,
Y.
, and
Jia
,
Y.
,
2018
, “
Human Intention Prediction in Human-Robot Collaborative Tasks
,”
Proceedings of the Companion of the 2018 ACM/IEEE International Conference on Human–Robot Interaction
,
Chicago, IL
,
Mar. 5–8
, pp.
279
280
.
15.
Wang
,
W.
,
Li
,
R.
,
Chen
,
Y.
,
Sun
,
Y.
, and
Jia
,
Y.
,
2022
, “
Predicting Human Intentions in Human–Robot Hand-Over Tasks Through Multimodal Learning
,”
IEEE Trans. Autom. Sci. Eng.
,
19
(
3
), pp.
2339
2353
.
16.
Koppenborg
,
M.
,
Nickel
,
P.
,
Naber
,
B.
,
Lungfiel
,
A.
, and
Huelke
,
M.
,
2017
, “
Effects of Movement Speed and Predictability in Human–Robot Collaboration
,”
Human Factors Ergon. Manuf. Service Ind.
,
27
(
4
), pp.
197
209
.
17.
Tabar
,
R. S.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2022
, “
Efficient Joining Sequence Variation Analysis of Stochastic Batch Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
040905
.
18.
Tahmid
,
S.
,
Font-Llagunes
,
J. M.
, and
Yang
,
J.
,
2023
, “
Upper Extremity Joint Torque Estimation Through an Electromyography-Driven Model
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
030901
.
19.
Zhang
,
X.
,
Yi
,
D.
,
Behdad
,
S.
, and
Saxena
,
S.
,
2023
, “
Unsupervised Human Activity Recognition Learning for Disassembly Tasks
,”
IEEE Trans. Ind. Inform.
,
20.
Wang
,
P.
,
Liu
,
H.
,
Wang
,
L.
, and
Gao
,
R. X.
,
2018
, “
Deep Learning-Based Human Motion Recognition for Predictive Context-Aware Human-Robot Collaboration
,”
CIRP Ann.
,
67
(
1
), pp.
17
20
.
21.
Xiong
,
Q.
,
Zhang
,
J.
,
Wang
,
P.
,
Liu
,
D.
, and
Gao
,
R. X.
,
2020
, “
Transferable Two-Stream Convolutional Neural Network for Human Action Recognition
,”
J. Manuf. Syst.
,
56
, pp.
605
614
.
22.
Digo
,
E.
,
Pastorelli
,
S.
, and
Gastaldi
,
L.
,
2022
, “
A Narrative Review on Wearable Inertial Sensors for Human Motion Tracking in Industrial Scenarios
,”
Robotics
,
11
(
6
), p.
138
.
23.
Liu
,
H.
, and
Wang
,
L.
,
2017
, “
Human Motion Prediction for Human-Robot Collaboration
,”
J. Manuf. Syst.
,
44
, pp.
287
294
.
24.
Schlagenhauf
,
F.
,
Sreeram
,
S.
, and
Singhose
,
W.
,
2018
, “
Comparison of Kinect and Vicon Motion Capture of Upper-Body Joint Angle Tracking
,”
Proceedings of the 2018 IEEE 14th International Conference on Control and Automation
,
Anchorage, AK
,
June 12–15
, pp.
674
679
.
25.
Tian
,
S.
,
Liang
,
X.
, and
Zheng
,
M.
,
2023
, “
An Optimization-Based Human Behavior Modeling and Prediction for Human-Robot Collaborative Disassembly
,”
Proceedings of the American Control Conference (ACC)
,
San Diego, CA
,
May 31–June 2
, pp.
3356
3361
.
26.
Vrigkas
,
M.
,
Nikou
,
C.
, and
Kakadiaris
,
I. A.
,
2015
, “
A Review of Human Activity Recognition Methods
,”
Front. Rob. AI
,
2
, p.
28
.
27.
Attal
,
F.
,
Mohammed
,
S.
,
Dedabrishvili
,
M.
,
Chamroukhi
,
F.
,
Oukhellou
,
L.
, and
Amirat
,
Y.
,
2015
, “
Physical Human Activity Recognition Using Wearable Sensors
,”
Sensors
,
15
(
12
), pp.
31314
31338
.
28.
Vu
,
C. C.
, and
Kim
,
J.
,
2018
, “
Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms
,”
Sensors
,
18
(
9
), p.
3109
.
29.
Yu
,
X.
,
He
,
W.
,
Li
,
Y.
,
Xue
,
C.
,
Li
,
J.
,
Zou
,
J.
, and
Yang
,
C.
,
2019
, “
Bayesian Estimation of Human Impedance and Motion Intention for Human–Robot Collaboration
,”
IEEE Trans. Cybern.
,
51
(
4
), pp.
1822
1834
.
30.
Nicolis
,
D.
,
Zanchettin
,
A. M.
, and
Rocco
,
P.
,
2018
, “
Human Intention Estimation Based on Neural Networks for Enhanced Collaboration With Robots
,”
Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
1326
1333
.
31.
Mavsar
,
M.
,
Deniša
,
M.
,
Nemec
,
B.
, and
Ude
,
A.
,
2021
, “
Intention Recognition With Recurrent Neural Networks for Dynamic Human-Robot Collaboration
,”
Proceedings of the 2021 20th International Conference on Advanced Robotics (ICAR)
,
Ljubljana, Slovenia
,
Dec. 6–10
, pp.
208
215
.
32.
Maceira
,
M.
,
Olivares-Alarcos
,
A.
, and
Alenya
,
G.
,
2020
, “
Recurrent Neural Networks for Inferring Intentions in Shared Tasks for Industrial Collaborative Robots
,”
Proceedings of the 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
,
Naples, Italy
,
Aug. 31–Sept. 4
, pp.
665
670
.
33.
Dua
,
N.
,
Singh
,
S. N.
, and
Semwal
,
V. B.
,
2021
, “
Multi-Input CNN-GRU Based Human Activity Recognition Using Wearable Sensors
,”
Computing
,
103
(
7
), pp.
1461
1478
.
34.
Zhu
,
X.
,
Li
,
L.
,
Zhang
,
W.
,
Rao
,
T.
,
Xu
,
M.
,
Huang
,
Q.
, and
Xu
,
D.
,
2017
, “
Dependency Exploitation: A Unified CNN-RNN Approach for Visual Emotion Recognition
,”
Proceedings of the 26th International Joint Conference on Artificial Intelligence IJCAI
,
Melbourne, Australia
,
Aug. 19–25
, pp.
3595
3601
.
35.
Liu
,
B.
,
Adeli
,
E.
,
Cao
,
Z.
,
Lee
,
K. H.
,
Shenoi
,
A.
,
Gaidon
,
A.
, and
Niebles
,
J. C.
,
2020
, “
Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
3485
3492
.
36.
Yan
,
L.
,
Gao
,
X.
,
Zhang
,
X.
, and
Chang
,
S.
,
2019
, “
Human-Robot Collaboration by Intention Recognition Using Deep LSTM Neural Network
,”
Proceedings of the 2019 IEEE 8th International Conference on Fluid Power and Mechatronics (FPM)
, pp.
1390
1396
.
37.
Steven Eyobu
,
O.
, and
Han
,
D. S.
,
2018
, “
Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network
,”
Sensors
,
18
(
9
), p.
2892
.
38.
Xin
,
L.
,
Wang
,
P.
,
Chan
,
C. Y.
,
Chen
,
J.
,
Li
,
S. E.
, and
Cheng
,
B.
,
2018
, “
Intention-Aware Long Horizon Trajectory Prediction of Surrounding Vehicles Using Dual LSTM Networks
,”
Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC)
,
Maui, HI
,
Nov. 4–7
, pp.
1441
1446
.
39.
Shi
,
Q.
, and
Zhang
,
H.
,
2021
, “
An Improved Learning-Based LSTM Approach for Lane Change Intention Prediction Subject to Imbalanced Data
,”
Transp. Res. Part C: Emerg. Technol.
,
133
, p.
103414
.
40.
Saleh
,
K.
,
Hossny
,
M.
, and
Nahavandi
,
S.
,
2017
, “
Intent Prediction of Vulnerable Road Users From Motion Trajectories Using Stacked LSTM Network
,”
Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)
,
Yokohama, Japan
,
Oct. 16–19
, pp.
327
332
.
41.
Sui
,
Z.
,
Zhou
,
Y.
,
Zhao
,
X.
,
Chen
,
A.
, and
Ni
,
Y.
,
2021
, “
Joint Intention and Trajectory Prediction Based on Transformer
,”
Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
, pp.
7082
7088
.
42.
Pettersson
,
J.
, and
Falkman
,
P.
,
2023
, “
Comparison of LSTM, Transformers, and MLP-Mixer Neural Networks for Gaze Based Human Intention Prediction
,”
Front. Neurorob.
,
17
, p.
1157957
.
43.
Henderson
,
M.
,
Casanueva
,
I.
,
Mrkšić
,
N.
,
Su
,
P. H.
,
Wen
,
T. H.
, and
Vulić
,
I.
,
2019
, “
ConveRT: Efficient and Accurate Conversational Representations From Transformers
,”
arXiv preprint arXiv:1911.03688
.https://arxiv.org/abs/1911.03688
44.
Gao
,
X.
,
Yan
,
L.
,
Wang
,
G.
, and
Gerada
,
C.
,
2023
, “
Hybrid Recurrent Neural Network Architecture-Based Intention Recognition for Human–Robot Collaboration
,”
IEEE Trans. Cybern.
,
53
(
3
), pp.
1578
1586
.
45.
Zhou
,
H.
,
Yang
,
G.
,
Wang
,
B.
,
Li
,
X.
,
Wang
,
R.
,
Huang
,
X.
,
Wu
,
H.
, and
Wang
,
X. V.
,
2023
, “
An Attention-Based Deep Learning Approach for Inertial Motion Recognition and Estimation in Human-Robot Collaboration
,”
J. Manuf. Syst.
,
67
, pp.
97
110
.
46.
Prevost
,
C. G.
,
Desbiens
,
A.
, and
Gagnon
,
E.
,
2007
, “
Extended Kalman Filter for State Estimation and Trajectory Prediction of a Moving Object Detected by an Unmanned Aerial Vehicle
,”
Proceedings of the 2007 American Control Conference
,
New York, NY
,
July 9–13
, pp.
1805
1810
.
47.
Jin
,
Z.
, and
Pagilla
,
P. R.
,
2020
, “
Operator Intent Prediction With Subgoal Transition Probability Learning for Shared Control Applications
,”
Proceedings of the 2020 IEEE International Conference on Human-Machine Systems (ICHMS)
,
Rome, Italy
,
Sept. 7–9
, pp.
1
6
.
48.
Linderman
,
S.
,
Antin
,
B.
,
Zoltowski
,
D.
, and
Glaser
,
J.
,
2020
,
SSM: Bayesian Learning and Inference for State Space Models
.
49.
Deng
,
Q.
, and
Söffker
,
D.
,
2021
, “
A Review of HMM-Based Approaches of Driving Behaviors Recognition and Prediction
,”
IEEE Trans. Intell. Vehicles
,
7
(
1
), pp.
21
31
.
50.
Liu
,
S.
,
Zheng
,
K.
,
Zhao
,
L.
, and
Fan
,
P.
,
2020
, “
A Driving Intention Prediction Method Based on Hidden Markov Model for Autonomous Driving
,”
Comput. Commun.
,
157
, pp.
143
149
.
51.
Peddi
,
R.
,
Di Franco
,
C.
,
Gao
,
S.
, and
Bezzo
,
N.
,
2020
, “
A Data-Driven Framework for Proactive Intention-Aware Motion Planning of a Robot in a Human Environment
,”
Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 24, 2020–Jan. 24, 2021
, pp.
5738
5744
.
52.
Kelley
,
R.
,
Tavakkoli
,
A.
,
King
,
C.
,
Nicolescu
,
M.
,
Nicolescu
,
M.
, and
Bebis
,
G.
,
2008
, “
Understanding Human Intentions via Hidden Markov Models in Autonomous Mobile Robots
,”
Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction
,
Amsterdam, The Netherlands
,
Mar. 12–15
, pp.
367
374
.
53.
Mor
,
B.
,
Garhwal
,
S.
, and
Kumar
,
A.
,
2021
, “
A Systematic Review of Hidden Markov Models and Their Applications
,”
Archiv. Comput. Methods Eng.
,
28
(
3
), pp.
1429
1448
.
54.
Ramezani
,
S. B.
,
Killen
,
B.
,
Cummins
,
L.
,
Rahimi
,
S.
,
Amirlatifi
,
A.
, and
Seale
,
M.
,
2021
, “
A Survey of HMM-Based Algorithms in Machinery Fault Prediction
,”
Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI)
, pp.
1
9
.
55.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Adv. Neural Inf. Process. Syst.
, p.
30
.
56.
Giuliari
,
F.
,
Hasan
,
I.
,
Cristani
,
M.
, and
Galasso
,
F.
,
2021
, “
Transformer Networks for Trajectory Forecasting
,”
Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR)
, pp.
10335
10342
.
57.
Yan
,
H.
,
Deng
,
B.
,
Li
,
X.
, and
Qiu
,
X.
,
2019
, “
TENER: Adapting Transformer Encoder for Named Entity Recognition
,”
arXiv preprint arXiv:1911.04474
. https://arxiv.org/abs/1911.04474
58.
Chen
,
Z.
,
Zhang
,
L.
,
Cao
,
Z.
, and
Guo
,
J.
,
2018
, “
Distilling the Knowledge From Handcrafted Features for Human Activity Recognition
,”
IEEE Trans. Ind. Inform.
,
14
(
10
), pp.
4334
4342
.
59.
Rabiner
,
L.
, and
Juang
,
B.
,
1986
, “
An Introduction to Hidden Markov Models
,”
IEEE ASSP Mag.
,
3
(
1
), pp.
4
16
.
You do not currently have access to this content.