Abstract

We present a novel methodology to generate mechanical structures based on fractal geometry using the chaos game, which generates self-similar point-sets within a polygon. Using the Voronoi decomposition of these points, we are able to generate groups of self-similar structures that can be related back to their chaos game parameters, namely, the polygonal domain, fractional distance, and number of samples. Our approach explores the use of forward design of generative structures, which in some cases can be easier to use for designing than inverse generative design techniques. To this end, the central hypothesis of our work is that structures generated using the chaos game can generate families of self-similar structures that, while not identical, exhibit similar mechanical behavior in a statistical sense. We present a systematic study of these self-similar structures through modal analysis and tensile loading and demonstrate a preliminary confirmation of our hypothesis.

References

1.
Shea
,
K.
,
Aish
,
R.
, and
Gourtovaia
,
M.
,
2005
, “
Towards Integrated Performance-Driven Generative Design Tools
,”
Autom. Constr.
,
14
(
2
), pp.
253
264
.
2.
Buonamici
,
F.
,
Carfagni
,
M.
,
Furferi
,
R.
,
Volpe
,
Y.
, and
Governi
,
L.
,
2020
, “
Generative Design: An Explorative Study
,”
Comput. Aided Des. Appl.
,
18
(
1
), pp.
144
155
.
3.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
4.
Al-Jawfi
,
R. A.
,
Al-Helali
,
B. M.
, and
Ahmed
,
A. M.
,
2014
, “
Fractal Image Compression Using Self-Organizing Mapping
,”
Appl. Math.
,
5
(
12
), pp.
1810
1819
.
5.
Rian
,
I. M.
, and
Sassone
,
M.
,
2014
, “
Fractal-Based Generative Design of Structural Trusses Using Iterated Function System
,”
Int. J. Space Struct.
,
29
(
4
), pp.
181
203
.
6.
Fan
,
J. A.
,
Yeo
,
W.-H.
,
Su
,
Y.
,
Hattori
,
Y.
,
Lee
,
W.
,
Jung
,
S.-Y.
,
Zhang
,
Y.
, et al.,
2014
, “
Fractal Design Concepts for Stretchable Electronics
,”
Nat. Commun.
,
5
(
1
), p.
3266
.
7.
Mishra
,
J.
, and
Mishra
,
S.
,
2007
,
L-System Fractals
,
Elsevier
,
Philadelphia, PA
.
8.
Barnsley
,
M. F.
, and
Demko
,
S.
,
1985
, “
Iterated Function Systems and the Global Construction of Fractals
,”
Proc. R. Soc. Lond. A Math. Phys. Sci.
,
399
(
1817
), pp.
243
275
.
9.
Schroeder
,
M.
,
2009
,
Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise
,
Courier Corporation
,
North Chelmsford, MA
.
10.
Deschavanne
,
P. J.
,
Giron
,
A.
,
Vilain
,
J.
,
Fagot
,
G.
, and
Fertil
,
B.
,
1999
, “
Genomic Signature: Characterization and Classification of Species Assessed by Chaos Game Representation of Sequences
,”
Mol. Biol. Evol.
,
16
(
10
), pp.
1391
1399
.
11.
Jampour
,
M.
,
Yaghoobi
,
M.
,
Ashourzadeh
,
M.
, and
Solemani
,
A.
,
2010
, “
A New Fast Technique for Fingerprint Identification With Fractal and Chaos Game Theory
,”
Fractals
,
18
, pp.
293
300
.
12.
Biswas
,
B.
,
Ghatak
,
R.
, and
Poddar
,
D. R.
,
2017
, “
A Fern Fractal Leaf Inspired Wideband Antipodal Vivaldi Antenna for Microwave Imaging System
,”
IEEE Trans. Antennas Propag.
,
65
(
11
), pp.
6126
6129
.
13.
Prusinkiewicz
,
P.
,
1986
, “
Graphical Applications of L-Systems
,”
Proceedings of Graphics Interface
,
Vancouver, Canada
,
May 26–30
, Vol.
86
, pp.
247
253
.
14.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
4
(
5
), pp.
585
594
.
15.
Ren
,
X.
,
Das
,
R.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Xie
,
Y. M.
,
2018
, “
Auxetic Metamaterials and Structures: a Review
,”
Smart Mater. Struct.
,
27
(
2
), p.
023001
.
16.
Wang
,
H.
,
Chen
,
Y.
, and
Rosen
,
D. W.
,
2005
, “
A Hybrid Geometric Modeling Method for Large Scale Conformal Cellular Structures
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
,
American Society of Mechanical Engineers Digital Collection
, pp.
421
427
.
17.
Wang
,
H.
,
Zhang
,
Y.
,
Lin
,
W.
, and
Qin
,
Q.-H.
,
2020
, “
A Novel Two-Dimensional Mechanical Metamaterial With Negative Poisson’s Ratio
,”
Comput. Mater. Sci.
,
171
, p.
109232
.
18.
Ai
,
L.
, and
Gao
,
X.-L.
,
2017
, “
Metamaterials With Negative Poisson’s Ratio and Non-positive Thermal Expansion
,”
Compos. Struct.
,
162
, pp.
70
84
.
19.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
331
390
.
20.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches: A Comparative Review
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
21.
Bielefeldt
,
B. R.
,
Akleman
,
E.
,
Reich
,
G. W.
,
Beran
,
P. S.
, and
Hartl
,
D. J.
,
2019
, “
L-System-Generated Mechanism Topology Optimization Using Graph-Based Interpretation
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020905
.
22.
Ward
,
R. M.
,
Bielefeldt
,
B. R.
, and
Hartl
,
D. J.
,
2020
, “
Design of Tailorable Stiffness Structures Using L-System Topology Optimization
,”
Behavior and Mechanics of Multifunctional Materials IX
, Vol.
11377
,
Online
,
Apr. 27–May 8
,
SPIE
, pp.
112
122
.
23.
Tian
,
J.
,
Tang
,
K.
,
Chen
,
X.
, and
Wang
,
X.
,
2022
, “
Machine Learning-Based Prediction and Inverse Design of 2d Metamaterial Structures With Tunable Deformation-Dependent Poisson’s Ratio
,”
Nanoscale
,
14
(
35
), pp.
12677
12691
.
24.
White
,
D. A.
,
Arrighi
,
W. J.
,
Kudo
,
J.
, and
Watts
,
S. E.
,
2019
, “
Multiscale Topology Optimization Using Neural Network Surrogate Models
,”
Comput. Methods Appl. Mech. Eng.
,
346
, pp.
1118
1135
.
25.
Garland
,
A. P.
,
White
,
B. C.
,
Jensen
,
S. C.
, and
Boyce
,
B. L.
,
2021
, “
Pragmatic Generative Optimization of Novel Structural Lattice Metamaterials With Machine Learning
,”
Mater. Des.
,
203
, p.
109632
.
26.
Podroužek
,
J.
,
Marcon
,
M.
,
Ninčević
,
K.
, and
Wan-Wendner
,
R.
,
2019
, “
Bio-Inspired 3d Infill Patterns for Additive Manufacturing and Structural Applications
,”
Materials
,
12
(
3
), p.
499
.
27.
Ebert
,
M.
,
Subramanian
,
S. G.
,
Akleman
,
E.
, and
Krishnamurthy
,
V. R.
,
2020
, “
Generative Infills for Additive Manufacturing Using Space-Filling Polygonal Tiles
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
84010
,
Online
,
Aug. 17–19
,
American Society of Mechanical Engineers
, p.
V11BT11A014
.
28.
Icking
,
C.
,
Klein
,
R.
,
Ma
,
L.
,
Nickel
,
S.
, and
Weißler
,
A.
,
2001
, “
On Bisectors for Different Distance Functions
,”
Discrete Appl. Math.
,
109
(
1–2
), pp.
139
161
.
29.
Howison
,
M.
, and
Séquin
,
C. H.
,
2009
, “
Cad Tools for Creating Space-Filing 3d Escher Tiles
,”
Comput.-Aided Des. Appl.
,
6
(
6
), pp.
737
748
.
30.
Subramanian
,
S. G.
,
Eng
,
M.
,
Krishnamurthy
,
V. R.
, and
Akleman
,
E.
,
2019
, “
Delaunay Lofts: A Biologically Inspired Approach for Modeling Space Filling Modular Structures
,”
Comput. Graph.
,
82
, pp.
73
83
.
31.
Schumacher
,
C.
,
Marschner
,
S.
,
Gross
,
M.
, and
Thomaszewski
,
B.
,
2018
, “
Mechanical Characterization of Structured Sheet Materials
,”
ACM Trans. Graph.
,
37
(
4
), pp.
1
15
.
32.
Martínez
,
J.
,
Skouras
,
M.
,
Schumacher
,
C.
,
Hornus
,
S.
,
Lefebvre
,
S.
, and
Thomaszewski
,
B.
,
2019
, “
Star-Shaped Metrics for Mechanical Metamaterial Design
,”
ACM Trans. Graph.
,
38
(
4
), pp.
1
13
.
33.
Sun
,
F.
,
Lai
,
C.
, and
Fan
,
H.
,
2016
, “
In-Plane Compression Behavior and Energy Absorption of Hierarchical Triangular Lattice Structures
,”
Mater. Des.
,
100
, pp.
280
290
.
34.
Zhikharev
,
L.
,
2021
, “
A Sierpiński Triangle Geometric Algorithm for Generating Stronger Structures
,”
J. Phys.: Conf. Ser.
,
1901
(
1
), p.
012066
.
35.
Cheng
,
Q.
,
Yin
,
J.
,
Wen
,
J.
, and
Yu
,
D.
,
2023
, “
Mechanical Properties of 3d-Printed Hierarchical Structures Based on Sierpinski Triangles
,”
Int. J. Mech. Sci.
,
247
, p.
108172
.
36.
Liang
,
H.
,
Hao
,
W.
,
Xue
,
G.
,
Liu
,
B.
,
Pu
,
Y.
, and
Ma
,
F.
,
2022
, “
Parametric Design Strategy of a Novel Self-Similar Hierarchical Honeycomb for Multi-Stage Energy Absorption Demand
,”
Int. J. Mech. Sci.
,
217
, p.
107029
.
37.
Tao
,
Y.
,
Li
,
W.
,
Wei
,
K.
,
Duan
,
S.
,
Wen
,
W.
,
Chen
,
L.
,
Pei
,
Y.
, and
Fang
,
D.
,
2019
, “
Mechanical Properties and Energy Absorption of 3d Printed Square Hierarchical Honeycombs Under In-Plane Axial Compression
,”
Compos. Part B: Eng.
,
176
, p.
107219
.
38.
Chen
,
Y.
,
Li
,
T.
,
Jia
,
Z.
,
Scarpa
,
F.
,
Yao
,
C.-W.
, and
Wang
,
L.
,
2018
, “
3d Printed Hierarchical Honeycombs With Shape Integrity Under Large Compressive Deformations
,”
Mater. Des.
,
137
, pp.
226
234
.
39.
Jeffrey
,
H.
,
1992
, “
Chaos Game Visualization of Sequences
,”
Comput. Graph.
,
16
(
1
), pp.
25
33
.
40.
Talatahari
,
S.
, and
Azizi
,
M.
,
2020
, “
Optimization of Constrained Mathematical and Engineering Design Problems Using Chaos Game Optimization
,”
Comput. Ind. Eng.
,
145
, p.
106560
.
41.
Ramadan
,
A.
,
Kamel
,
S.
,
Hussein
,
M. M.
, and
Hassan
,
M. H.
,
2021
, “
A New Application of Chaos Game Optimization Algorithm for Parameters Extraction of Three Diode Photovoltaic Model
,”
IEEE Access
,
9
, pp.
51582
51594
.
42.
Barnsley
,
M. F.
,
2014
,
Fractals Everywhere
,
Academic Press
,
Cambridge, MA
.
43.
Ewins
,
D. J.
,
2009
,
Modal Testing: Theory, Practice and Application
,
John Wiley & Sons
,
Hoboken, NJ
.
44.
Avitabile
,
P.
,
2001
, “
Experimental Modal Analysis
,”
Sound Vib.
,
35
(
1
), pp.
20
31
.
You do not currently have access to this content.