Abstract

Bidirectional evolutionary structural optimization (BESO) is a well-recognized method for generating optimal topologies of structures. Its soft-kill variant has a high computational cost, especially for large-scale structures, whereas the hard-kill variant often faces convergence issues. Addressing these issues, this paper proposes a hybrid BESO model tailored for graphics processing units (GPUs) by combining the soft-kill and hard-kill approaches for large-scale structures. A GPU-based algorithm is presented for dynamically isolating the solid/hard elements from the void/soft elements in the finite element analysis (FEA) stage. The hard-kill approach is used in the FEA stage with an assembly-free solver to facilitate the use of high-resolution meshes without exceeding the GPU memory limits, whereas for the rest of the optimization procedure, the soft-kill approach with a material interpolation scheme is implemented. Furthermore, the entire BESO method pipeline is accelerated for both the proposed hybrid and the standard soft-kill BESO. The comparison of the hybrid BESO with the GPU-accelerated soft-kill BESO using four benchmark problems with more than two million degrees-of-freedom reveals three key benefits of the proposed hybrid model: reduced execution time, decreased memory consumption, and improved FEA convergence, all of which mitigate the major computational issues associated with BESO.

References

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
2.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
3.
Zhou
,
M.
, and
Rozvany
,
G.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1
), pp.
309
336
(Second World Congress on Computational Mechanics).
4.
Mlejnek
,
H.
,
1992
, “
Some Aspects of the Genesis of Structures
,”
Struct. Optim.
,
5
(
1–2
), pp.
64
69
.
5.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1997
, “Basic Evolutionary Structural Optimization,”
Evolutionary Structural Optimization
, 1st ed.,
Springer
,
London
, pp.
12
29
.
6.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
7.
Xie
,
Y.
, and
Steven
,
G.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
8.
Huang
,
X.
, and
Xie
,
Y. M.
,
2009
, “
Bi-Directional Evolutionary Topology Optimization of Continuum Structures With One or Multiple Materials
,”
Comput. Mech.
,
43
(
3
), pp.
393
401
.
9.
Huang
,
X.
, and
Xie
,
Y.
,
2008
, “
A New Look at ESO and BESO Optimization Methods
,”
Struct. Multidiscipl. Optim.
,
35
(
1
), pp.
89
92
.
10.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscipl. Optim.
,
49
(
1
), pp.
1
38
.
11.
Rozvany
,
G. I.
, and
Querin
,
O. M.
,
2002
, “
Combining ESO With Rigorous Optimality Criteria
,”
Int. J. Veh. Des.
,
28
(
4
), pp.
294
299
.
12.
Zhu
,
J.
,
Zhang
,
W.
, and
Qiu
,
K.
,
2007
, “
Bi-Directional Evolutionary Topology Optimization Using Element Replaceable Method
,”
Comput. Mech.
,
40
(
1
), pp.
97
109
.
13.
Aage
,
N.
,
Andreassen
,
E.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2017
, “
Giga-Voxel Computational Morphogenesis for Structural Design
,”
Nature
,
550
(
7674
), pp.
84
86
.
14.
Aage
,
N.
,
Andreassen
,
E.
, and
Lazarov
,
B. S.
,
2015
, “
Topology Optimization Using Petsc: An Easy-to-Use, Fully Parallel, Open Source Topology Optimization Framework
,”
Struct. Multidiscipl. Optim.
,
51
(
3
), pp.
565
572
.
15.
Borrvall
,
T.
, and
Petersson
,
J.
,
2001
, “
Large-Scale Topology Optimization in 3D Using Parallel Computing
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
46
), pp.
6201
6229
.
16.
Mahdavi
,
A.
,
Balaji
,
R.
,
Frecker
,
M.
, and
Mockensturm
,
E. M.
,
2006
, “
Topology Optimization of 2D Continua for Minimum Compliance Using Parallel Computing
,”
Struct. Multidiscipl. Optim.
,
32
(
2
), pp.
121
132
.
17.
Sharma
,
D.
,
Deb
,
K.
, and
Kishore
,
N.
,
2011
, “
Domain-Specific Initial Population Strategy for Compliant Mechanisms Using Customized Genetic Algorithm
,”
Struct. Multidiscipl. Optim.
,
43
(
4
), pp.
541
554
.
18.
Sharma
,
D.
,
Deb
,
K.
, and
Kishore
,
N.
,
2014
, “
Customized Evolutionary Optimization Procedure for Generating Minimum Weight Compliant Mechanisms
,”
Eng. Opt.
,
46
(
1
), pp.
39
60
.
19.
Sharma
,
D.
, and
Deb
,
K.
,
2014
, “
Generation of Compliant Mechanisms Using Hybrid Genetic Algorithm
,”
J. Inst. Eng. (India): Ser. C
,
95
(
4
), pp.
295
307
.
20.
París
,
J.
,
Colominas
,
I.
,
Navarrina
,
F.
, and
Casteleiro
,
M.
,
2013
, “
Parallel Computing in Topology Optimization of Structures With Stress Constraints
,”
Comput. Struct.
,
125
, pp.
62
73
.
21.
Martínez-Frutos
,
J.
, and
Herrero-Pérez
,
D.
,
2017
, “
GPU Acceleration for Evolutionary Topology Optimization of Continuum Structures Using Isosurfaces
,”
Comput. Struct.
,
182
, pp.
119
136
.
22.
Munk
,
D. J.
,
Kipouros
,
T.
, and
Vio
,
G. A.
,
2019
, “
Multi-Physics Bi-Directional Evolutionary Topology Optimization on GPU-Architecture
,”
Eng. Comput.
,
35
(
3
), pp.
1059
1079
.
23.
Mukherjee
,
S.
,
Lu
,
D.
,
Raghavan
,
B.
,
Breitkopf
,
P.
,
Dutta
,
S.
,
Xiao
,
M.
, and
Zhang
,
W.
,
2021
, “
Accelerating Large-Scale Topology Optimization: State-of-the-Art and Challenges
,”
Arch. Comput. Methods Eng.
,
28
, pp.
4549
4571
.
24.
Zhou
,
M.
, and
Rozvany
,
G.
,
2001
, “
On the Validity of ESO Type Methods in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
21
(
1
), pp.
80
83
.
25.
Huang
,
X.
, and
Xie
,
Y.-M.
,
2010
, “
A Further Review of ESO Type Methods for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
41
(
5
), pp.
671
683
.
26.
Edwards
,
C.
,
Kim
,
H.
, and
Budd
,
C.
,
2007
, “
An Evaluative Study on ESO and SIMP for Optimising a Cantilever Tie-Beam
,”
Struct. Multidiscipl. Optim.
,
34
(
5
), pp.
403
414
.
27.
Huang
,
X.
, and
Xie
,
Y.
,
2010
, “
Evolutionary Topology Optimization of Continuum Structures With an Additional Displacement Constraint
,”
Struct. Multidiscipl. Optim.
,
40
(
1–6
), p.
409
.
28.
Picelli
,
R.
,
Vicente
,
W.
, and
Pavanello
,
R.
,
2015
, “
Bi-Directional Evolutionary Structural Optimization for Design-Dependent Fluid Pressure Loading Problems
,”
Eng. Optim.
,
47
(
10
), pp.
1324
1342
.
29.
Xia
,
L.
,
Fritzen
,
F.
, and
Breitkopf
,
P.
,
2017
, “
Evolutionary Topology Optimization of Elastoplastic Structures
,”
Struct. Multidiscipl. Optim.
,
55
(
2
), pp.
569
581
.
30.
Munk
,
D. J.
,
Kipouros
,
T.
,
Vio
,
G. A.
,
Steven
,
G. P.
, and
Parks
,
G. T.
,
2017
, “
Topology Optimisation of Micro Fluidic Mixers Considering Fluid–Structure Interactions With a Coupled Lattice Boltzmann Algorithm
,”
J. Comput. Phys.
,
349
, pp.
11
32
.
31.
Huang
,
X.
, and
Xie
,
Y.
,
2011
, “
Evolutionary Topology Optimization of Continuum Structures Including Design-Dependent Self-Weight Loads
,”
Finite Elem. Anal. Des.
,
47
(
8
), pp.
942
948
.
32.
Ghabraie
,
K.
,
2015
, “
An Improved Soft-Kill BESO Algorithm for Optimal Distribution of Single or Multiple Material Phases
,”
Struct. Multidiscipl. Optim.
,
52
(
4
), pp.
773
790
.
33.
Tang
,
T.
,
Li
,
B.
,
Fu
,
X.
,
Xi
,
Y.
, and
Yang
,
G.
,
2018
, “
Bi-Directional Evolutionary Topology Optimization for Designing a Neutrally Buoyant Underwater Glider
,”
Eng. Optim.
,
50
(
8
), pp.
1270
1286
.
34.
Li
,
Q.
,
Steven
,
G.
, and
Xie
,
Y.
,
2001
, “
A Simple Checkerboard Suppression Algorithm for Evolutionary Structural Optimization
,”
Struct. Multidiscipl. Optim.
,
22
(
3
), pp.
230
239
.
35.
Yang
,
X.
,
Xie
,
Y.
,
Liu
,
J.
,
Parks
,
G.
, and
Clarkson
,
P.
,
2002
, “
Perimeter Control in the Bidirectional Evolutionary Optimization Method
,”
Struct. Multidiscipl. Optim.
,
24
(
6
), pp.
430
440
.
36.
Huang
,
X.
, and
Xie
,
Y.
,
2007
, “
Convergent and Mesh-Independent Solutions for the Bi-Directional Evolutionary Structural Optimization Method
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1039
1049
.
37.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
,
16
(
1
), pp.
68
75
.
38.
Ram
,
L.
, and
Sharma
,
D.
,
2017
, “
Evolutionary and GPU Computing for Topology Optimization of Structures
,”
Swarm Evol. Comput.
,
35
, pp.
1
13
.
39.
Bruns
,
T. E.
,
2007
, “
Topology Optimization of Convection-Dominated, Steady-State Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2859
2873
.
40.
Duan
,
X.-B.
,
Li
,
F.-F.
, and
Qin
,
X.-Q.
,
2015
, “
Adaptive Mesh Method for Topology Optimization of Fluid Flow
,”
Appl. Math. Lett.
,
44
, pp.
40
44
.
41.
Cucinotta
,
F.
,
Guglielmino
,
E.
,
Longo
,
G.
,
Risitano
,
G.
,
Santonocito
,
D.
, and
Sfravara
,
F.
,
2019
, “Topology Optimization Additive Manufacturing-Oriented for a Biomedical Application,”
Advances on Mechanics, Design Engineering and Manufacturing II
,
Springer
,
Cham
, pp.
184
193
.
42.
Torquato
,
S.
,
Hyun
,
S.
, and
Donev
,
A.
,
2002
, “
Multifunctional Composites: Optimizing Microstructures for Simultaneous Transport of Heat and Electricity
,”
Phys. Rev. Lett.
,
89
(
Dec.
), p.
266601
.
43.
Schmidt
,
S.
, and
Schulz
,
V.
,
2011
, “
A 2589 Line Topology Optimization Code Written for the Graphics Card
,”
Comput. Vis. Sci.
,
14
(
6
), pp.
249
256
.
44.
Ratnakar
,
S. K.
,
Sanfui
,
S.
, and
Sharma
,
D.
,
2022
, “
GPU-Based Element-by-Element Strategies for Accelerating Topology Optimization of 3D Continuum Structures Using Unstructured All-Hexahedral Mesh
,”
ASME J. Comput. Inform. Sci. Eng.
,
22
(
2
), p.
021013
.
45.
De Troya
,
M. A. S.
, and
Tortorelli
,
D. A.
,
2018
, “
Adaptive Mesh Refinement in Stress-Constrained Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
58
(
6
), pp.
2369
2386
.
46.
Liao
,
Z.
,
Zhang
,
Y.
,
Wang
,
Y.
, and
Li
,
W.
,
2019
, “
A Triple Acceleration Method for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
60
(
2
), pp.
727
744
.
47.
Martínez-Frutos
,
J.
, and
Herrero-Pérez
,
D.
,
2016
, “
Large-Scale Robust Topology Optimization Using Multi-GPU Systems
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
393
414
.
48.
Martínez-Frutos
,
J.
,
Martínez-Castejón
,
P. J.
, and
Herrero-Pérez
,
D.
,
2017
, “
Efficient Topology Optimization Using GPU Computing With Multilevel Granularity
,”
Adv. Eng. Softw.
,
106
, pp.
47
62
.
49.
Ratnakar
,
S. K.
,
Sanfui
,
S.
,
Sharma
,
D.
,
Kumar
,
N.
,
Tibor
,
S.
,
Sindhwani
,
R.
, and
Srivastava
,
P.
,
2020
,
Advances in Interdisciplinary Engineering: Select Proceedings of FLAME 2020
,
N
Kumar
,
S.
Tibor
,
R.
Sindhwani
, and
P.
Srivastava
, eds.,
Springer
,
Singapore
, pp.
87
97
.
50.
Ratnakar
,
S. K.
,
Sanfui
,
S.
,
Sharma
,
D.
,
Kumar
,
N.
,
Tibor
,
S.
,
Sindhwani
,
R.
, and
Srivastava
,
P.
,
2020
,
Advances in Interdisciplinary Engineering: Select Proceedings of FLAME 2020
,
N
Kumar
,
S.
Tibor
,
R.
Sindhwani
, and
P.
Srivastava
, eds.,
Springer
,
Singapore
, pp.
1
10
.
51.
Challis
,
V. J.
,
Roberts
,
A. P.
, and
Grotowski
,
J. F.
,
2014
, “
High Resolution Topology Optimization Using Graphics Processing Units (GPUs)
,”
Struct. Multidiscipl. Optim.
,
49
(
2
), pp.
315
325
.
52.
Li
,
Y.
,
Zhou
,
B.
, and
Hu
,
X.
,
2021
, “
A Two-Grid Method for Level-Set Based Topology Optimization With GPU-Acceleration
,”
J. Comput. Appl. Math.
,
389
, p.
113336
.
53.
Liu
,
H.
,
Tian
,
Y.
,
Zong
,
H.
,
Ma
,
Q.
,
Wang
,
M. Y.
, and
Zhang
,
L.
,
2019
, “
Fully Parallel Level Set Method for Large-Scale Structural Topology Optimization
,”
Comput. Struct.
,
221
, pp.
13
27
.
54.
Kiran
,
U.
,
Sharma
,
D.
, and
Gautam
,
S. S.
,
2018
, “
GPU-Warp Based Finite Element Matrices Generation and Assembly Using Coloring Method
,”
J. Comput. Des. Eng.
,
6
(
4
), pp.
705
718
.
55.
Sanfui
,
S.
, and
Sharma
,
D.
,
2020
, “
A Three-Stage Graphics Processing Unit-Based Finite Element Analyses Matrix Generation Strategy for Unstructured Meshes
,”
Int. J. Numer. Methods Eng.
,
121
(
17
), pp.
3824
3848
.
56.
Sanfui
,
S.
, and
Sharma
,
D.
,
2021
, “
Symbolic and Numeric Kernel Division for Graphics Processing Unit-Based Finite Element Analysis Assembly of Regular Meshes With Modified Sparse Storage Formats
,”
J. Comput. Inf. Sci. Eng.
,
22
(
1
), p.
7
.
57.
Kiran
,
U.
,
Gautam
,
S. S.
, and
Sharma
,
D.
,
2020
, “
GPU-Based Matrix-Free Finite Element Solver Exploiting Symmetry of Elemental Matrices
,”
Computing
,
102
, pp.
1941
1965
.
58.
Ramírez-Gil
,
F. J.
,
Silva
,
E. C. N.
, and
Montealegre-Rubio
,
W.
,
2016
, “
Topology Optimization Design of 3D Electrothermomechanical Actuators by Using GPU as a Co-Processor
,”
Comput. Methods Appl. Mech. Eng.
,
302
, pp.
44
69
.
59.
Huang
,
X.
, and
Xie
,
M.
,
2010
,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
John Wiley & Sons
,
New York
.
60.
Kirk
,
D. B.
, and
Hwu
,
W.-M. W.
,
2010
,
Programming Massively Parallel Processors: A Hands-On Approach
, 1st ed.,
Morgan Kaufmann Publishers Inc.
,
San Francisco, CA
.
61.
Georgescu
,
S.
,
Chow
,
P.
, and
Okuda
,
H.
,
2013
, “
GPU Acceleration for FEM-Based Structural Analysis
,”
Arch. Comput. Methods Eng.
,
20
(
2
), pp.
111
121
.
62.
Shewchuk
,
J. R.
,
1994
, “
An Introduction to the Conjugate Gradient Method Without the Agonizing Pain
,” https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf.
63.
Valdez
,
S. I.
,
Botello
,
S.
,
Ochoa
,
M. A.
,
Marroquín
,
J. L.
, and
Cardoso
,
V.
,
2017
, “
Topology Optimization Benchmarks in 2D: Results for Minimum Compliance and Minimum Volume in Planar Stress Problems
,”
Arch. Comput. Methods Eng.
,
24
(
4
), pp.
803
839
.
You do not currently have access to this content.