Abstract

Maintaining an even pressure distribution in an indexable cutting tool interface is crucial to the life expectancy of a carbide insert. Avoiding uneven pressure distribution is highly relevant for intermittent cutting operations because two load cases arise for full immersion, inside and outside the cutting zone, which can cause alternating contact positioning. Current positioning methodologies, such as 3-2-1 principles, do not consider external mechanical forces, which must be considered for insert-tool body positioning designs. Therefore, this paper proposes an algorithm to calculate a contact index to aid in the design of locating schemes for the early design phases of insert-tool body interface design. The results indicate that it is possible to visualize where a contact condition needs to exist to give support based on the mechanical loads acting on the insert.

References

1.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2018
, “
Time-Domain Modeling of Varying Dynamic Characteristics in Thin-Wall Machining Using Perturbation and Reduced-Order Substructuring Methods
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011015
.
2.
Altintas
,
Y.
,
Tuysuz
,
O.
,
Habibi
,
M.
, and
Li
,
Z. L.
,
2018
, “
Virtual Compensation of Deflection Errors in Ball End Milling of Flexible Blades
,”
CIRP Ann.
,
67
(
1
), pp.
365
368
.
3.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2008
, “
Virtual Simulation and Optimization of Milling Operations – Part I: Process Simulation
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p. 051004.
4.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Mechanics and Dynamics of Serrated Cylindrical and Tapered End Mills
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
317
326
.
5.
Lopatukhin
,
I.
,
Ber
,
A.
, and
Rotberg
,
J.
,
2011
, “
Analysis and Optimization of the Contact Pressure Distribution Between an Insert and Its Pocket Due to the Clamping and the Cutting Action
,”
J. Manuf. Sci. Prod.
,
2
(
1
), pp.
17
26
.
6.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
A Comparative Study of Tolerance Analysis Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
247
256
.
7.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1996
, “
Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
318
324
.
8.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
9.
Söderberg
,
R.
, and
Lindkvist
,
L.
,
1999
, “
Computer Aided Assembly Robustness Evaluation
,”
J. Eng. Des.
,
10
(
2
), pp.
165
181
.
10.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Dahlström
,
S.
,
2006
, “
Computer-Aided Robustness Analysis for Compliant Assemblies
,”
J. Eng. Des.
,
17
(
5
), pp.
411
428
.
11.
Dantan
,
J.-Y.
,
Ballu
,
A.
, and
Mathieu
,
L.
,
2008
, “
Geometrical Product Specifications – Model for Product Life Cycle
,”
Comput.-Aided Des.
,
40
(
4
), pp.
493
501
.
12.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2015
, “
Contact and Mobility Simulation for Mechanical Assemblies Based on Skin Model Shapes Skin Model Based Simulation of Contact and Mobility for Mechanical Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
2
), p.
021009
.
13.
Camuz
,
S.
,
Bengtsson
,
M.
,
Söderberg
,
R.
, and
Wärmefjord
,
K.
,
2019
, “
Reliability-Based Design Optimization of Surface-to-Surface Contact for Cutting Tool Interface Designs
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041006
.
14.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
.
15.
Camuz
,
S.
,
Lorin
,
S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2019
, “
Nonlinear Material Model in Part Variation Simulations of Sheet Metals
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021012
.
16.
Schleich
,
B.
, and
Wartzack
,
S.
,
2016
, “
A Quantitative Comparison of Tolerance Analysis Approaches for Rigid Mechanical Assemblies
,”
Proc. CIRP
,
43
, pp.
172
177
.
17.
Garaizar
,
O. R.
,
Qiao
,
L.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2016
, “
Integration of Thermal Effects Into Tolerancing Using Skin Model Shapes
,”
Proc. CIRP
,
43
, pp.
196
201
.
18.
Junnan
,
Z.
,
Yanlong
,
C.
,
Fan
,
L.
,
Ting
,
L.
, and
Jiangxin
,
Y.
,
2020
, “
Tolerance Analysis of an Assembly by Considering Part Deformation
,”
Proc. CIRP
,
92
, pp.
81
87
.
19.
Shawki
,
G.
, and
Abdel-Aal
,
M.
,
1965
, “
Effect of Fixture Rigidity and Wear on Dimensional Accuracy
,”
Int. J. Mach. Tool Des. Res.
,
5
(
3
), pp.
183
202
.
20.
Hurtado
,
J. F.
, and
Melkote
,
S. N.
,
2001
, “
Improved Algorithm for Tolerance-Based Stiffness Optimization of Machining Fixtures
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
720
730
.
21.
Xing
,
Y.
,
2017
, “
Fixture Layout Design of Sheet Metal Parts Based on Global Optimization Algorithms
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101004
.
22.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
, 2nd ed.,
Cambridge University Press
,
New York
.
23.
Bjorklund
,
S.
,
Gustafsson
,
G.
,
Hageryd
,
L.
, and
Rundqvist
,
B.
,
2015
,
Karlebo Handbok
, 16th ed.,
Liber
,
Stockholm
.
You do not currently have access to this content.