Abstract

Various sources of error can lead to the position accuracy of the robot being orders of magnitude worse than its repeatability. For the accuracy of drilling in the aviation field, high-precision assembly, and other areas depending on the industrial robot’s absolute positioning accuracy, it is essential to improve the accuracy of absolute positioning through calibration. In this paper, an error model of the robot considering both constant and high-order joint-dependent kinematic errors is established, and the model is modified by the Hermite polynomial, thereby mitigating the occurrence of the Runge phenomenon. To identify high-order joint-dependent kinematic errors, a robot calibration method based on the back-propagation neural network (BP) optimized by the sparrow search algorithm (SSA-BP) is proposed, which optimizes the uncertainty of weights and thresholds in the BP algorithm. Experiments on an EFORT ECR5 robot were implemented to validate the efficiency of the proposed method. The positioning error is reduced from 3.1704 mm to 0.2798 mm, and the error decrease rate reaches 42.92% (compared with BP calibration) and 21.09% (compared with particle swarm optimization back-propagation calibration). With the new calibration method using SSA-BP, robot positioning errors can be effectively compensated for, and the robot positioning accuracy can be improved significantly.

References

1.
Santolaria
,
J.
,
Brosed
,
F. J.
,
Velázquez
,
J.
, and
Jiménez
,
R.
,
2013
, “
Self-Alignment of On-Board Measurement Sensors for Robot Kinematic Calibration
,”
Precis. Eng.
,
37
(
3
), pp.
699
710
.
2.
Garcia-Moreno
,
A. I.
,
Gonzalez-Barbosa
,
J. J.
,
Ramirez-Pedraza
,
A.
,
Hurtado-Ramos
,
J. B.
, and
Ornelas-Rodríguez
,
F. J.
,
2016
, “
Complete Sensitivity Analysis in a Lidar-Camera Calibration Model
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
1
), p.
014501
.
3.
Malhan
,
R.
,
Jomy Joseph
,
R.
,
Bhatt
,
P. M.
,
Shah
,
B.
, and
Gupta
,
S. K.
,
2022
, “
Algorithms for Improving Speed and Accuracy of Automated Three-Dimensional Reconstruction With a Depth Camera Mounted on an Industrial Robot
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031012
.
4.
Hongzhe
,
Z.
,
Siyuan
,
R.
,
Ming
,
L.
, and
Shuqing
,
Z.
,
2017
, “
Design and Development of a 2-DOF Flexure Mechanism for Precise Unbalance Measurement
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041013
.
5.
Dehghani
,
M.
,
Kharrati
,
H.
,
Seyedarabi
,
H.
, and
Baradarannia
,
M.
,
2019
, “
The Correcting Approach of Gyroscope-Free Inertial Navigation Based on the Applicable Topological Map
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021001
.
6.
Alici
,
G.
,
Jagielski
,
R.
,
Şekercioğlu
,
Y. A.
, and
Shirinzadeh
,
B.
,
2006
, “
Prediction of Geometric Errors of Robot Manipulators With Particle Swarm Optimisation Method
,”
Rob. Auton. Syst.
,
54
(
12
), pp.
956
966
.
7.
Ma
,
L.
,
Bazzoli
,
P.
,
Sammons
,
P. M.
,
Landers
,
R. G.
, and
Bristow
,
D. A.
,
2018
, “
Modeling and Calibration of High-Order Joint-Dependent Kinematic Errors for Industrial Robots
,”
Robot. Comput.-Integr. Manuf.
,
50
(
4
), pp.
153
167
.
8.
Zhouxiang
,
J.
,
Min
,
H.
,
Xiaoqi
,
T.
, and
Yixuan
,
G.
,
2021
, “
A New Calibration Method for Joint-Dependent Geometric Errors of Industrial Robot Based on Multiple Identification Spaces
,”
Robot. Comput.-Integr. Manuf.
,
71
(
1
), p.
102175
.
9.
Zhihong
,
J.
,
Weigang
,
Z.
,
Hui
,
L.
,
Yang
,
M.
,
Wencheng
,
N.
, and
Qiang
,
H.
,
2017
, “
A New Kind of Accurate Calibration Method for Robotic Kinematic Parameters Based on Extended Kalman and Particle Filter Algorithm
,”
IEEE Trans. Ind. Electron.
,
65
(
4
), pp.
3337
3345
.
10.
Huangquang
,
C.
,
Nguyen
,
H.
,
Tran
,
T.
,
Tran
,
H.
, and
Jeon
,
J.
,
2022
, “
A Robot Calibration Method Using a Neural Network Based on a Butterfly and Flower Pollination Algorithm
,”
IEEE Trans. Ind. Electron.
,
69
(
4
), pp.
3865
3875
.
11.
Maolin
,
L.
,
Bing
,
Z.
,
Yutao
,
Z.
, and
Ruijuan
,
Z.
,
2021
, “
A Two-Step Accelerated Levenberg-Marquardt Method for Solving Multilinear Systems in Tensor-Train Format
,”
J. Comput. Appl. Math.
,
382
(
1
), p.
113069
.
12.
Xing
,
W.
,
Nai-Qiu
,
S.
,
Peng-Cheng
,
C.
, and
Bo
,
W.
,
2006
, “
Power Transformer Fault Integrated Diagnosis Based on Improved PSO-BP Neural Networks and D-S Evidential Reasoning
,”
Autom. Electr. Power Syst.
,
30
(
7
), pp.
46
50
.
13.
Dali
,
W.
,
Ying
,
B.
, and
Jiying
,
Z.
,
2012
, “
Robot Manipulator Calibration Using Neural Network and a Camera-Based Measurement System
,”
Trans. Inst. Meas. Control
,
34
(
1
), pp.
105
121
.
14.
Le
,
P. N.
, and
Kang
,
H. J.
,
2020
, “
Robot Manipulator Calibration Using a Model Based Identification Technique and a Neural Network With the Teaching Learning-Based Optimization
,”
IEEE Access
,
8
(
8
), pp.
105447
105454
.
15.
Su
,
H.
,
Qi
,
W.
,
Hu
,
Y.
,
Sandoval
,
J.
,
Longbin
,
Z.
,
Schmirander
,
Y.
,
Guang
,
C.
, et al
,
2019
, “
Towards Model-Free Tool Dynamic Identification and Calibration Using Multi-layer Neural Network
,”
Sensors
,
19
(
17
), p.
3636
.
16.
Xue
,
J.
, and
Shen
,
B.
,
2020
, “
A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm
,”
Syst. Sci. Control Eng.
,
8
(
1
), pp.
22
34
.
17.
Liu
,
J. P.
,
Hu
,
P.
,
Xue
,
H.
,
Pan
,
X.
, and
Chen
,
C.
,
2022
, “
Prediction of Milk Protein Content Based on Improved Sparrow Search Algorithm and Optimized Back Propagation Neural Network
,”
Spectrosc. Lett.
,
55
(
4
), pp.
229
239
.
18.
Shi
,
L.
,
Ding
,
X.
,
Li
,
M.
, and
Liu
,
Y.
,
2021
, “
Research on the Capability Maturity Evaluation of Intelligent Manufacturing Based on Firefly Algorithm, Sparrow Search Algorithm, and BP Neural Network
,”
Complexity
,
2021
(
3
), pp.
1
26
.
19.
Song
,
L.
, and
Yan
,
G.
,
2017
, “
On the Local Convergence of a Levenberg-Marquardt Method for Nonsmooth Nonlinear Complementarity Problems
,”
ScienceAsia
,
43
(
6
), pp.
377
389
.
20.
Jiang
,
Y.
,
Nakamura
,
G.
, and
Shirota
,
K.
,
2021
, “
Levenberg-Marquardt Method for Solving Inverse Problem of MRE Based on the Modified Stationary Stokes System
,”
Inverse Probl.
,
37
(
12
), p.
125013
.
21.
Behling
,
R.
,
Fischer
,
A.
,
Herrich
,
M.
,
Iusem
,
A.
, and
Ye
,
Y.
,
2014
, “
A Levenberg-Marquardt Method With Approximate Projections
,”
Comput. Optim. Appl.
,
59
(
1–2
), pp.
5
26
.
22.
Li
,
M.
,
Yingjie
,
Y.
,
Weiming
,
C.
,
Weibin
,
R.
, and
Lining
,
S.
,
2008
, “
Positioning Error Compensation for a Parallel Robot-Based on BP Neural Networks
,”
Guangxue Jingmi Gongcheng/Opt. Precis. Eng.
,
16
(
5
), pp.
878
883
.
You do not currently have access to this content.