Abstract

Online detection of wave soldering is an important method of inspecting defective products in the workshop. Accurate quality detection can reduce production costs and provide support for quality warnings in the wave soldering process. However, there are still problems in improving the detection accuracy for the defect class. Although class imbalance in data can be addressed by data-level methods such as over-sampling and under-sampling, these methods destroy the integrity of the original data set and may cause information loss and over-fitting problems. In order to solve the above problems, this article focuses on how to design a new loss function that fuses class weights from focal loss (FS) and sample weights from AdaBoost to improve attention to the minority samples without changing data distribution. In this way, an FS-AdaBoost-RegNet model based on transfer learning is constructed to enhance the detection accuracy in industrial environment. Finally, the images of the wave soldering from an electronic assembly workshop are taken to validate the performance of the proposed method. The experiment on 941 testing samples of the imbalance datasets showed that the FS-AdaBoost-RegNet model with new loss function reached the overall accuracy of 98.39%, and the overall recall of 96.19%. The results proved that the proposed method promotes the ability to identify defect class compared with other methods.

References

1.
Carvalho
,
V.
,
Arcipreste
,
B.
,
Soares
,
D.
,
Ribas
,
L.
,
Rodrigues
,
N.
,
Teixeira
,
S. F. C. F.
, and
Teixeira
,
J. C.
,
2022
, “
Numerical Modeling of the Wave Soldering Process and Experimental Validation
,”
ASME J. Electron. Packag.
,
144
(
1
), p.
011011
.
2.
Li
,
Y.
,
Hu
,
M.
, and
Wang
,
T.
,
2020
, “
Visual Inspection of Weld Surface Quality
,”
J. Intell. Fuzzy Syst.
,
39
(
4
), pp.
5075
5084
.
3.
Ren
,
M.
,
Shen
,
R.
, and
Gong
,
Y.
,
2022
, “
A Surface Defect Detection Method Via Fusing Multi-level Features
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
051005
.
4.
Sassi
,
P.
,
Tripicchio
,
P.
, and
Avizzano
,
C. A.
,
2019
, “
A Smart Monitoring System for Automatic Welding Defect Detection
,”
IEEE Trans. Ind. Electron.
,
66
(
12
), pp.
9641
9650
.
5.
Fei
,
X.
,
Tan
,
C.
, and
Yuan
,
Z.
, “
Machine Vision Analysis of Welding Region and Its Application to Seam Tracking in Arc Welding
,”
2022 7th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA)
,
Chengdu, China
,
Apr. 22–24
, pp.
445
452
.
6.
Abd Al Rahman
,
M.
, and
Mousavi
,
A.
,
2020
, “
A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry
,”
IEEE Access
,
8
(
1
), pp.
183192
183271
.
7.
Yu
,
J.
,
2019
, “
Enhanced Stacked Denoising Autoencoder-Based Feature Learning for Recognition of Wafer Map Defects
,”
IEEE Trans. Semicond. Manuf.
,
32
(
4
), pp.
613
624
.
8.
Yu
,
N.
,
Xu
,
Q.
, and
Wang
,
H.
,
2019
, “
Wafer Defect Pattern Recognition and Analysis Based on Convolutional Neural Network
,”
IEEE Trans. Semicond. Manuf.
,
32
(
4
), pp.
566
573
.
9.
Cha
,
Y.-J.
,
Choi
,
W.
, and
Büyüköztürk
,
O.
,
2017
, “
Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
32
(
5
), pp.
361
378
.
10.
Park
,
J.-K.
,
An
,
W.-H.
, and
Kang
,
D.-J.
,
2019
, “
Convolutional Neural Network Based Surface Inspection System for Non-Patterned Welding Defects
,”
Int. J. Precis. Eng. Manuf.
,
20
(
3
), pp.
363
374
.
11.
Taherkhani
,
A.
,
Cosma
,
G.
, and
McGinnity
,
T. M.
,
2020
, “
AdaBoost-CNN: An Adaptive Boosting Algorithm for Convolutional Neural Networks to Classify Multi-class Imbalanced Datasets Using Transfer Learning
,”
Neurocomputing
,
404
(
1
), pp.
351
366
.
12.
Lin
,
T.-Y.
,
Goyal
,
P.
,
Girshick
,
R.
,
He
,
K.
, and
Dollar
,
P.
,
2020
, “
Focal Loss for Dense Object Detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
42
(
2
), pp.
318
327
.
13.
Czimmermann
,
T.
,
Ciuti
,
G.
,
Milazzo
,
M.
,
Chiurazzi
,
M.
,
Roccella
,
S.
,
Oddo
,
C. M.
, and
Dario
,
P.
,
2020
, “
Visual-Based Defect Detection and Classification Approaches for Industrial Applications-A Survey
,”
Sensors
,
20
(
5
), p.
1459
.
14.
Kamal
,
K.
,
Qayyum
,
R.
,
Mathavan
,
S.
, and
Zafar
,
T.
,
2017
, “
Wood Defects Classification Using Laws Texture Energy Measures and Supervised Learning Approach
,”
Adv. Eng. Inform.
,
34
, pp.
125
135
.
15.
Dunderdale
,
C.
,
Brettenny
,
W.
,
Clohessy
,
C.
, and
van Dyk
,
E. E.
,
2020
, “
Photovoltaic Defect Classification Through Thermal Infrared Imaging Using a Machine Learning Approach
,”
Prog. Photovolt. Res. Appl.
,
28
(
3
), pp.
177
188
.
16.
Kang
,
G.
,
Gao
,
S.
,
Yu
,
L.
, and
Zhang
,
D.
,
2019
, “
Deep Architecture for High-Speed Railway Insulator Surface Defect Detection: Denoising Autoencoder With Multitask Learning
,”
IEEE Trans. Instrum. Meas.
,
68
(
8
), pp.
2679
2690
.
17.
Kim
,
J.
,
Ko
,
J.
,
Choi
,
H.
, and
Kim
,
H.
,
2021
, “
Printed Circuit Board Defect Detection Using Deep Learning Via a Skip-Connected Convolutional Autoencoder
,”
Sensors
,
21
(
15
), p.
4968
.
18.
Lu
,
M.
, and
Mou
,
Y.
,
2020
, “
Bearing Defect Classification Algorithm Based on Autoencoder Neural Network
,”
Adv. Civil Eng.
,
2020
(
9
), p.
6680315
.
19.
Xu
,
Q.
,
Zhao
,
Q.
,
Yu
,
G.
,
Wang
,
L.
, and
Shen
,
T.
,
2020
, “
Rail Defect Detection Method Based on Recurrent Neural Network
,”
2020 39th Chinese Control Conference (CCC)
,
Shenyang, China
,
July 27–29
, pp.
6486
6490
.
20.
Abeysundara
,
H. A.
,
Hamori
,
H.
,
Matsui
,
T.
, and
Sakawa
,
M.
,
2014
, “
A Multiobjective Evolutionary Optimized Recurrent Neural Network for Defects Detection on Flat Panel Displays
,”
11th International Conference on Modeling Decisions for Artificial Intelligence (MDAI)
,
Tokyo, Japan
,
Oct. 29–31
, pp.
170
181
.
21.
Panda
,
R.
,
Puhan
,
N. B.
,
Rao
,
A.
,
Padhy
,
D.
, and
Panda
,
G.
,
2017
, “
Recurrent Neural Network Based Retinal Nerve Fiber Layer Defect Detection in Early Glaucoma
,”
IEEE 14th International Symposium on Biomedical Imaging (ISBI)—From Nano to Macro
,
Melbourne, Australia
,
Apr. 18–21
,
IEEE
, pp.
692
695
.
22.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Rajendran
,
P.
,
Shah
,
B. C.
,
Thakar
,
S.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2021
, “
Image-Based Surface Defect Detection Using Deep Learning: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
040801
.
23.
Sauter
,
D.
,
Atik
,
C.
,
Schenk
,
C.
,
Buettner
,
R.
, and
Baumgartl
,
H.
,
2021
, “
Visual Defect Detection of Metal Screws Using a Deep Convolutional Neural Network
,”
45th Annual International IEEE-Computer-Society Computers, Software, and Applications Conference (COMPSAC), ELECTR, NETWORK
,
July 12–16
, pp.
303
311
.
24.
Cekic
,
I.
, and
Cavdar
,
K.
,
2023
, “
Detection of the Cracks in Metal Sheets Using Convolutional Neural Network (CNN)
,”
J. Fac. Eng. Archit. Gazi Univ.
,
38
(
1
), pp.
153
162
.
25.
Radosavovic
,
I.
,
Kosaraju
,
R. P.
,
Girshick
,
R.
,
Kaiming
,
H.
, and
Dollar
,
P.
,
2020
, “
Designing Network Design Spaces
,”
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Seattle, WA
,
June 13–19
, pp.
10425
10433
.
26.
He
,
J.
,
Fang
,
Z.
,
Liu
,
J.
,
Gao
,
F.
, and
Lin
,
J.
,
2022
, “
Fatigue Damage Detection From Imbalanced Inspection Data of Lamb Wave
,”
Struct. Health Monit.
,
21
(
3
), pp.
928
944
.
27.
Rao
,
K. N.
, and
Reddy
,
C. S.
,
2020
, “
A Novel Under Sampling Strategy for Efficient Software Defect Analysis of Skewed Distributed Data
,”
Evol. Syst.
,
11
(
1
), pp.
119
131
.
28.
Lee
,
W.
,
Jun
,
C.-H.
, and
Lee
,
J.-S.
,
2017
, “
Instance Categorization by Support Vector Machines to Adjust Weights in AdaBoost for Imbalanced Data Classification
,”
Inf. Sci.
,
381
(
1
), pp.
92
103
.
29.
Yang
,
X.
,
Zhang
,
Y.
,
Lv
,
W.
, and
Wang
,
D.
,
2021
, “
Image Recognition of Wind Turbine Blade Damage Based on a Deep Learning Model With Transfer Learning and an Ensemble Learning Classifier
,”
Renewable Energy
,
163
(
1
), pp.
386
397
.
30.
Zhao
,
X.
,
Zhang
,
M.
, and
Zhang
,
J.
,
2021
, “
Ensemble Learning-Based CNN for Textile Fabric Defects Classification
,”
Int. J. Cloth. Sci. Technol.
,
33
(
4
), pp.
664
678
.
31.
Konovalenko
,
I.
,
Maruschak
,
P.
, and
Brevus
,
V.
,
2022
, “
Steel Surface Defect Detection Using an Ensemble of Deep Residual Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
1
), p.
014501
.
You do not currently have access to this content.