Abstract

Functional decomposition is an important task in early systems engineering and design, where the overall function of the system is resolved into the functions of its components or subassemblies. Conventionally, this task is performed manually, because of the possibility of multiple solution paths and the need for understanding the physics phenomena that could realize the desired effects. To this end, this paper presents a formal method for functional decomposition using physics-based qualitative reasoning. The formal representation includes three parts: (1) a natural language lexicon that can be used to detect the changes of physical states of material and energy flows, (2) a set of causation tables that abstracts the knowledge of qualitative physics by capturing the causal relations between the various quantities involved in a physical phenomenon or process, and (3) a process-to-subgraph mapping that translates the physical processes to function structure constructs. The algorithms use the above three representations and some additional topological reasoning to synthesize and assemble function structure graphs that are decompositions of a given black box model. The paper presents the formal representations and reasoning algorithms and illustrates this method using an example function model of an air-heating device. It also presents the software implementation of the representations and the algorithms and uses it to validate the method’s ability to generate multiple decompositions from a black-box function model.

References

1.
Pahl
,
G.
,
Beitz
,
W.
,
Wallace
,
K.
, and
Blessing
,
L.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer-Verlag London Limited
,
London
.
2.
Otto
,
K.
, and
Wood
,
K. L.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
3.
Ullman
,
D.
,
2010
,
The Mechanical Design Process
, 4th ed.,
McGraw-Hill
,
New York
.
4.
Stone
,
R. B.
, and
Wood
,
K. L.
,
1999
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.
5.
Bohm
,
M. R.
,
Stone
,
R. B.
,
Simpson
,
T. W.
, and
Steva
,
E. D.
,
2008
, “
Introduction of a Data Schema to Support a Design Repository
,”
Comput. Aided Des.
,
40
(
7
), pp.
801
811
.
6.
Bohm
,
M. R.
,
Vucovich
,
J. P.
, and
Stone
,
R. B.
,
2008
, “
Using a Design Repository to Drive Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
014502
.
7.
Forbus
,
K. D.
,
1984
, “
Qualitative Process Theory
,”
Artif. Intell.
,
24
(
1–3
), pp.
85
168
.
8.
Forbus
,
K. D.
,
1993
, “
Qualitative Process Theory: Twelve Years After
,”
Artif. Intell.
,
59
(
1–2
), pp.
115
123
.
9.
Smith
,
S. M.
, and
Linsey
,
J.
,
2011
, “
A Three-Pronged Approach for Overcoming Design Fixation
,”
J. Creat. Behav.
,
45
(
2
), pp.
83
91
.
10.
Umeda
,
Y.
,
Ishii
,
M.
,
Yoshioka
,
M.
,
Shimomura
,
Y.
, and
Tomiyama
,
T.
,
1996
, “
Supporting Conceptual Design Based on the Function-Behavior-State Modeler
,”
Artif. Intell. Eng. Des. Anal. Manuf.: AIEDAM
,
10
(
04
), pp.
275
288
.
11.
Gero
,
J. S.
,
1990
, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Mag.
,
11
(
4
), pp.
26
36
.
12.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2004
, “
The Situated Function-Behaviour-Structure Framework
,”
Des. Stud.
,
25
(
4
), pp.
373
391
.
13.
Chandrasekaran
,
B.
,
1990
, “
Design Problem Solving: A Task Analysis
,”
AI Mag.
,
11
(
4
), pp.
59
71
.
14.
Goel
,
A.
,
Rugaber
,
S.
, and
Vattam
,
S.
,
2009
, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Eng. Des. Anal. Manuf.: AIEDAM
,
23
(
1
),
23
25
.
15.
Qian
,
L.
, and
Gero
,
J. S.
,
1996
, “
Function–Behavior–Structure Paths and Their Role in Analogy-Based Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.: AIEDAM
,
10
(
04
), pp.
289
312
.
16.
Goel
,
A. K.
,
1997
, “
Design, Analogy, and Creativity
,”
IEEE Expert
,
12
(
3
), pp.
62
70
.
17.
Goel
,
A. K.
, and
Bhatta
,
S. R.
,
2004
, “
Use of Design Patterns in Analogy-Based Design
,”
Adv. Eng. Inform.
,
18
(
2
), pp.
85
94
.
18.
Goel
,
A.
,
Bhatta
,
S.
, and
Stroulia
,
E.
,
1997
, “Kritik: An Early Case-Based Design System,”
Issues and Applications of Case-Based Reasoning in Design
,
M.
lou Maher
, and
P.
Pu
, eds.,
Erlbaum
,
Mahwah, NJ
,
87
132
.
19.
Iwasaki
,
Y.
,
Vescovi
,
M.
,
Fikes
,
R.
, and
Chandrasekaran
,
B.
,
1995
, “
Causal Functional Representation Language With Behavior-Based Semantics
,”
Appl. Artif. Intell.
,
9
(
1
), pp.
5
31
.
20.
Gero
,
J. S.
, and
McNeill
,
T.
,
1998
, “
An Approach to the Analysis of Design Protocols
,”
Des. Stud.
,
19
(
1
), pp.
21
61
.
21.
Umeda
,
Y.
, and
Tomiyama
,
T.
,
1997
, “
Functional Reasoning in Design
,”
IEEE Intell. Syst.
,
12
(
2
), pp.
42
48
.
22.
Kurtoglu
,
T.
,
Campbell
,
M. I.
,
Arnold
,
C. B.
,
Stone
,
R. B.
, and
Mcadams
,
D. A.
,
2009
, “
A Component Taxonomy as a Framework for Computational Design Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
1
), p.
011007
.
23.
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2009
, “
Automated Synthesis of Electromechanical Design Configurations From Empirical Analysis of Function to Form Mapping
,”
J. Eng. Des.
,
20
(
1
), pp.
83
104
.
24.
Börekçi
,
N.
,
2018
, “
Design Divergence Using the Morphological Chart
,”
Des. Technol. Educ.
,
23
(
3
), pp.
62
87
.
25.
Bryant
,
C. R.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2005
, “
Concept Generation From the Functional Basis of Design
,”
Proceedings ICED 05, the 15th International Conference on Engineering Design
,
Melbourne, Australia
,
Aug. 15–18
, pp.
1
19
.
26.
Kurtoglu
,
T.
,
Swantner
,
A.
, and
Campbell
,
M. I.
,
2010
, “
Automating the Conceptual Design Process: From Black Box to Component Selection
,”
Artif. Intell. Eng. Des. Anal. Manuf.: AIEDAM
,
24
(
1
), pp.
49
62
.
27.
McAdams
,
D. A.
, and
Wood
,
K. L.
,
2002
, “
A Quantitative Similarity Metric for Design-by-Analogy
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
173
182
.
28.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
29.
Nagel
,
J. K. S.
,
2016
, “
Systematic Bio-Inspired Design: How Far Along Are We?
Insight
,
19
(
1
), pp.
32
35
.
30.
Nagel
,
J. K. S.
,
Schmidt
,
L.
, and
Born
,
W.
,
2018
, “
Establishing Analogy Categories for Bio-Inspired Design
,”
Designs (Basel)
,
2
(
4
), p.
48
.
31.
Sridharan
,
P.
, and
Campbell
,
M. I.
,
2005
, “
A Study on the Grammatical Construction of Function Structures
,”
Artif. Intell. Eng. Des. Anal. Manuf.: AIEDAM
,
19
(
3
), pp.
139
160
.
32.
Sierla
,
S.
,
Tumer
,
I. Y.
,
Papakonstantinou
,
N.
,
Koskinen
,
K.
, and
Jensen
,
D.
,
2012
, “
Early Integration of Safety to the Mechantronic System Design Process for the Functional Failure Identification and Propagation Framework
,”
Mechatronics
,
22
(
2
), pp.
137
151
.
33.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
,
2008
, “
A Graph-Based Fault Identification and Propagation Framework for Functional Design of Complex Systems
,”
ASME J. Mech. Des.
,
130
(
5
), p.
051401
.
34.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
van Wie
,
M.
,
2005
, “
The Function-Failure Design Method
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
397
407
.
35.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Stock
,
M. E.
,
2005
, “
Linking Product Functionality to Historic Failures to Improve Failure Analysis in Design
,”
Res. Eng. Des.
,
16
(
1–2
), pp.
96
108
.
36.
Sen
,
C.
,
Caldwell
,
B. W.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2010
, “
Evaluation of the Functional Basis Using an Information Theoretic Approach
,”
Artif. Intell. Eng. Des. Anal. Manuf.: AIEDAM
,
24
(
1
), pp.
87
105
.
37.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2010
, “
Topological Information Content and Expressiveness of Function Models in Mechanical Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031003
.
38.
Patel
,
A.
,
Kramer
,
W. S.
,
Flynn
,
M.
,
Summers
,
J. D.
, and
Shuffler
,
M. L.
,
2020
, “
Function Modeling: A Modeling Behavior Analysis of Pause Patterns
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111402
.
39.
Arlitt
,
R. M.
,
Nix
,
A. A.
,
Sen
,
C.
, and
Stone
,
R. B.
,
2016
, “
Discovery of Mental Metadata Used for Analogy Formation in Function-Based Design
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101110
.
40.
Bohm
,
M.
,
Eckert
,
C.
,
Sen
,
C.
,
Srinivasan
,
V.
,
Summers
,
J. D.
, and
Vermaas
,
P.
,
2017
, “
Thoughts on Benchmarking of Function Modeling: Why and How
,”
Artif. Intell. Eng. Des. Anal. Manuf.: AIEDAM
,
31
(
4
), pp.
393
400
.
41.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2013
, “
A Formal Representation of Function Structure Graphs for Physics-Based Reasoning
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
2
), p.
021001
.
42.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2013
, “
Physics-Based Reasoning in Conceptual Design Using a Formal Representation of Function Structure Graphs
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
1
), p.
011008
.
43.
Chowdhury
,
A.
,
Venkatanarasimhan
,
L. N. A.
, and
Sen
,
C.
,
2022
, “
Finite State Automata-Based Representation of Device States for Function Modeling of Multi-Modal Devices
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
1
), p. 021108.
44.
Chowdhury
,
A.
,
Venkatanarasimhan
,
L. N. A.
, and
Sen
,
C.
,
2021
, “
A Formal Representation of Conjugate Verbs for Function Modeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
5
), p.
050904
.
45.
Mao
,
X.
, and
Sen
,
C.
,
2020
, “
Semantic and Qualitative Physics-Based Reasoning on Plain-English Flow Terms for Generating Function Model Alternatives
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
041006
.
46.
Gill
,
A. S.
, and
Sen
,
C.
,
2020
, “
Evolutionary Approach to Function Model Synthesis: Development of Parameterization and Synthesis Rules
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, p. V009T09A062, ASME Paper No. DETC2020-22664.
47.
Gill
,
A. S.
, and
Sen
,
C.
,
2021
, “
Logic Rules for Automated Synthesis of Function Models Using Evolutionary Algorithms
,”
Proceedings of the ASME International Design Engineering Technical Conferences and the Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–20
.
48.
DeKleer
,
J.
, and
Brown
,
J. S.
,
1984
, “
A Qualitative Physics Based on Confluences
,”
Artif. Intell.
,
24
(
1–3
), pp.
7
83
.
49.
Forbus
,
K. D.
,
1996
, “Qualitative Reasoning,”
Computer Science Handbook
,
Elsevier Inc.
,
Cambridge, MA
, pp.
62.1
62.19
.
50.
de Kleer
,
J.
,
1975
,
Qualitative and Quantitative Knowledge in Classical Mechanics
,
Massachusetts Institute of Technology
,
Boston, MA
.
51.
Bobrow
,
D. G.
,
1984
, “
Qualitative Reasoning About Physical Systems: An Introduction
,”
Artif. Intell.
,
24
(
1–3
), pp.
1
5
.
52.
Chang
,
M. D.
,
Wetzel
,
J.
, and
Forbus
,
K. D.
,
2011
, “
Qualitative and Quantitative Reasoning Over Physics Textbook Diagrams
,”
Proceedings of the 25th International Workshop on Qualitative Reasoning
,
Barcelona, Spain
,
January
, p.
6
.
53.
Dillon
,
C.
,
1994
, “
Qualitative Reasoning About Physical Systems—An Overview
,”
Stud. Sci. Educ.
,
23
(
1
), pp.
39
57
.
54.
Coiera
,
E.
,
1992
, “
The Qualitative Representation of Physical Systems
,”
Knowl. Eng. Rev.
,
7
(
1
), pp.
55
77
.
55.
Forbus
,
K. D.
,
2018
,
Qualitative Representations: How People Reason and Learn About the Continuous World
,
The MIT Press
,
Boston, MA
.
56.
Skorstad
,
G.
, and
Forbus
,
K. D.
,
1989
, “
Qualitative and Quantitative Reasoning About Thermodynamics
,”
Proceedings of the Tenth Annual Conference of the Cognitive Science Society
,
Ann Arbor, MI
,
April
.
57.
Forbus
,
K. D.
,
Nielsen
,
P.
, and
Faltings
,
B.
,
2013
, “Qualitative Kinematics: A framework,”
Readings in Qualitative Reasoning About Physical Systems
,
Elsevier Inc.
,
Cambridge, MA
, pp.
562
567
.
58.
Forbus
,
K. D.
,
Barbella
,
D.
, and
Mcfate
,
C.
,
2015
,
Qualitative Reasoning for Learning by Reading: A Theoretical Analysis
,
Northwestern University
,
Evanston, IL
.
59.
Bhaskar
,
R.
, and
Nigam
,
A.
,
1990
, “
Qualitative Physics Using Dimensional Analysis
,”
Artif. Intell.
,
45
(
1–2
), pp.
73
111
.
60.
Top
,
J. L.
,
Akkermans
,
J. M.
, and
Breedveld
,
P. C.
,
1991
, “
Qualitative Reasoning About Physical Systems: An Artificial Intelligence Perspective
,”
J. Franklin Inst.
,
328
(
5–6
), pp.
1047
1065
.
61.
Forbus
,
K. D.
,
2013
, “Qualitative Physics: Past, Present, and Future,”
Readings in Qualitative Reasoning About Physical Systems
,
Elsevier Inc.
,
USA
, pp.
11
39
.
62.
Vickery
,
B. C.
,
1997
, “
Ontologies
,”
J. Inf. Sci.
,
23
(
4
), pp.
277
286
.
63.
Ji
,
S.
,
Pan
,
S.
,
Cambria
,
E.
,
Marttinen
,
P.
, and
Yu
,
P. S.
,
2022
, “
A Survey on Knowledge Graphs: Representation, Acquisition, and Applications
,”
IEEE Trans. Neural Netw. Learn Syst.
,
33
(
2
), pp.
494
514
.
64.
Kitamura
,
Y.
, and
Mizoguchi
,
R.
,
2003
, “
Ontology-Based Description of Functional Design Knowledge and Its Use in a Functional Way Server
,”
Expert Syst. Appl.
,
24
(
2
), pp.
153
166
.
65.
Kitamura
,
Y.
,
Koji
,
Y.
, and
Mizoguchi
,
R.
,
2005
, “
An Ontological Model of Device Function and Its Deployment for Engineering Knowledge Sharing
,”
First Workshop FOMI 2005—Formal Ontologies Meet Industry
,
Castelnuovo del Garda, Italy
,
June 9–10
, pp.
9
10
.
66.
Chen
,
Y.
,
Zhao
,
M.
,
Liu
,
Y.
, and
Xie
,
Y.
,
2016
, “
A Formal Functional Representation Methodology for Conceptual Design of Material-Flow Processing Devices
,”
Artif. Intell. Eng. Des. Anal. Manuf.: AIEDAM
,
30
(
4
), pp.
353
366
.
67.
Kitamura
,
Y.
,
Sano
,
T.
,
Namba
,
K.
, and
Mizoguchi
,
R.
,
2002
, “
A Functional Concept Ontology and Its Application to Automatic Identification of Functional Structures
,”
Adv. Eng. Inform.
,
16
(
2
), pp.
145
163
.
68.
Collins
,
J. B.
, and
Clark
,
D.
,
2014
,
Towards an Ontology of Physics
,
Naval Research Lab.
,
Washington, DC
.
69.
Yanchar
,
S. C.
, and
Hill
,
J. R.
,
2003
, “
What Is Psychology About? Toward An Explicit Ontology
,”
J. Humanist. Psychol.
,
43
(
1
), pp.
11
32
.
70.
Smith
,
B.
,
1995
, “
Formal Ontology, Common Sense and Cognitive Science
,”
Int. J. Hum. Comput. Stud.
,
43
(
5–6
), pp.
641
667
.
71.
Ignatow
,
G.
,
2014
, “
Ontology and Method in Cognitive Sociology
,”
Sociol. Forum
,
29
(
4
), pp.
990
994
.
72.
Bard
,
J. B. L.
, and
Rhee
,
S. Y.
,
2004
, “
Ontologies in Biology: Design, Applications and Future Challenges
,”
Nat. Rev. Genet.
,
5
(
3
), pp.
213
222
.
73.
Forbus
,
K. D.
,
2008
, “Qualitative Modeling,”
Foundations of Artificial Intelligence
, Vol.
3
,
F.
Harmelen
,
V.
Lifschitz
,
and B.
Porter
, eds.,
Elsevier
,
New York
, pp.
361
393
.
74.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M.
,
2010
,
Fundamentals of Engineering Thermodynamics
,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
75.
Peirce
,
C. S.
,
1878
, “
Deduction, Induction, and Hypothesis
,”
Pop. Sci. Mon.
,
13
(
1
), pp.
470
482
.
76.
Sen
,
C.
,
Summers
,
J. D.
, and
Mao
,
X.
,
2019
, “
A Physics-Based Formal Vocabulary of Energy Verbs for Function Modeling
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
77.
Sen
,
C.
,
2016
, “
Feature-Based Computer Modeling and Reasoning on Mechanical Functions
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, p. V01BT02A008.
78.
Venkatanarasimhan
,
L. N. A.
,
Mao
,
X.
,
Chowdhury
,
A.
, and
Sen
,
C.
,
2019
, “
Physics-Based Function Features for a Set of Material-Processing Verbs
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, p. V001T02A031, ASME Paper No. DETC2019-98343.
79.
Gill
,
A. S.
,
Summers
,
J. D.
, and
Turner
,
C. J.
,
2017
, “
Comparing Function Structures and Pruned Function Structures for Market Price Prediction: An Approach to Benchmarking Representation Inferencing Value
,”
Artif. Intell. Eng. Des. Anal. Manuf.: AIEDAM
,
31
(
4
), pp.
550
566
.
80.
Shah
,
J. J.
,
Vargas-Hernandez
,
N.
, and
Smith
,
S. M.
,
2003
, “
Metrics for Measuring Ideation Eeffectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
.
81.
Diestel
,
R.
,
2005
,
Graph Theory
,
Springer-Verlag
,
Heidelberg, New York
.
You do not currently have access to this content.