Abstract

Line clipping against a rectangular window is a fundamental problem in computer graphics. A robust and fast algorithm is needed not only for the traditional graphics pipeline but also for new applications, including web maps, nanomaterials, and sensor measurements. In this paper, we present a novel approach, which is based on the idea of combining the geometric and algebraic approaches. In particular, the proposed approach first decomposes a 2D line clipping problem into a set of 1D clipping problems, and then solves the 1D clipping problem by the comparison (i.e., >, <, and =) operation on the coordinate value of the projected points on one dimension only. Both theoretical analysis and experimental tests were conducted to demonstrate the improved robustness (for degenerated cases) and computational efficiency of the proposed approach.

References

1.
Lee
,
S.
,
Kwak
,
S.
, and
Cho
,
M.
,
2019
, “Universal Bounding Box Regression and Its Applications,”
Computer Vision—ACCV 2018. ACCV 2018. Lecture Notes in Computer Science
,
11366
,
C.
Jawahar
,
H.
Li
,
G.
Mori
, and
K.
Schindler
, eds.,
Springer
,
Cham
, pp.
373
387
.
2.
Li
,
M.
,
Zhou
,
Z.
, and
Liu
,
X.
,
2019
, “
Multi-Person Pose Estimation Using Bounding Box Constraint and LSTM
,”
IEEE Trans. Multimed.
,
21
(
10
), pp.
2653
2663
.
3.
Seyfried
,
D.
, and
Schoebel
,
J.
,
2015
, “
Detection Capability of a Pulsed Ground Penetrating Radar Utilizing an Oscilloscope and Radargram Fusion Approach for Optimal Signal Quality
,”
J. Appl. Geophys.
,
118
, pp.
167
174
.
4.
García-Moreno
,
A.
,
2021
, “
Towards Robust Methodology in Large-Scale Urban Reconstruction
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
024501
.
5.
Li
,
J.
,
2013
, “
Percolation Thresholds of Two-Dimensional Continuum Systems of Rectangles
,”
Phys. Rev. E
,
88
(
1
), p.
012101
.
6.
Miao
,
Y.
,
Yang
,
Q.
,
Chen
,
L.
,
Sammynaiken
,
R.
, and
Zhang
,
W. J.
,
2012
, “
Modeling of Piezoresistive Response of Carbon Nanotube Network-Based Films Under In-Plane Straining by Percolation Theory
,”
Appl. Phys. Lett.
,
101
(
6
), p.
063120
.
7.
Miao
,
Y.
,
Yang
,
Q.
,
Chen
,
L.
,
Sammynaiken
,
R.
, and
Zhang
,
W. J.
,
2013
, “
Influence of Aligned Carbon Nanotube Networks on Piezoresistive Response in Carbon Nanotube Films Under In-Plane Straining
,”
Appl. Phys. Lett.
,
102
(
23
), p.
233106
.
8.
Huang
,
L.
,
Meijers
,
M.
,
Šuba
,
R.
, and
van Oosterom
,
P.
,
2016
, “
Engineering Web Maps With Gradual Content Zoom Based on Streaming Vector Data
,”
ISPRS J. Photogramm. Remote Sens.
,
114
, pp.
274
293
.
9.
Enzberg
,
S. V.
,
Alhamadi
,
A.
, and
Ghoneim
,
A.
,
2016
, “
Registration of Feature-Poor 3D Measurements From Fringe Projection
,”
Sensors
,
16
(
3
), p.
283
.
10.
Vernica
,
T.
,
Lipman
,
R.
,
Kramer
,
T.
,
Kwon
,
S.
, and
Bernstein
,
W. Z.
,
2022
, “
Visualizing Standardized Model-Based Design and Inspection Data in Augmented Reality
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
41001
.
11.
Dammann
,
M. P.
,
Steger
,
W.
, and
Stelzer
,
R.
,
2022
, “
Automated and Adaptive Geometry Preparation for AR/VR-Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031010
.
12.
Malhan
,
R.
,
Jomy Joseph
,
R.
,
Bhatt
,
P. M.
,
Shah
,
B.
, and
Gupta
,
S. K.
,
2022
, “
Algorithms for Improving Speed and Accuracy of Automated Three-Dimensional Reconstruction With a Depth Camera Mounted on an Industrial Robot
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031012
.
13.
Bi
,
Z. M.
,
Zhang
,
W. J.
,
Chen
,
I. M.
, and
Lang
,
S.
,
2006
, “
Automated Generation of the D-H Parameters for Configuration Design of Modular Manipulators
,”
Rob. Comput.-Integr. Manuf.
,
23
(
5
), pp.
553
562
.
14.
Bhatt
,
P. M.
,
Kulkarni
,
A.
,
Malhan
,
R. K.
,
Shah
,
B. C.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2022
, “
Automated Planning for Robotic Multi-Resolution Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021006
.
15.
Lee
,
C.
,
Kang
,
S.
,
Kang
,
S. G.
,
Kim
,
K. H.
, and
Kim
,
K.-I.
,
2016
, “
Development of Key Functions for Flight Simulator
,”
Int. J. Control. Autom.
,
9
(
1
), pp.
347
358
.
16.
Li
,
M.
, and
McComb
,
C.
,
2022
, “
Using Physics-Informed Generative Adversarial Networks to Perform Super-Resolution for Multiphase Fluid Simulations
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
044501
.
17.
Schirra
,
S.
,
1997
, “Precision and Robustness in Geometric Computations,”
Algorithmic Foundations of Geographic Information Systems. CISM School 1996. Lecture Notes in Computer Science
,
1340
,
M.
van Kreveld
,
J.
Nievergelt
,
T.
Roos
, and
P.
Widmayer
, eds.,
Springer
,
Berlin/Heidelberg
.
18.
Zhang
,
W. J.
,
Ouyang
,
P. R.
, and
Sun
,
Z. H.
,
2010
, “
A Novel Hybridization Design Principle for Intelligent Mechatronics Systems
,”
Proceedings of International Conference on Advanced Mechatronics (ICAM2010)
,
Osaka, Japan
,
Oct. 4–6
, pp.
67
74
. https://www.jstage.jst.go.jp/article/jsmeicam/2010.5/0/2010.5_67/_article/-char/ja/
19.
Wu
,
F. X.
,
Zhang
,
W. J.
,
Li
,
Q.
, and
Ouyang
,
P.
,
2005
, “
Control of Hybrid Machines With 2-DOF for Trajectory Tracking Problems
,”
IEEE Trans. Control Syst. Technol.
,
13
(
2
), pp.
338
342
.
20.
Ouyang
,
P.
,
Li
,
Q.
,
Zhang
,
W. J.
, and
Guo
,
L. S.
,
2005
, “
Design, Modelling and Control of a Hybrid Machine System
,”
Mechatronics
,
14
(
10
), pp.
1197
1217
.
21.
Yu
,
H. Y.
,
He
,
Y. Y.
, and
Zhang
,
W. J.
,
2021
, “
A New Approach to Analyzing Interactions of Two Objects in Space Based on a Specially Tailored Local Coordinate System
,”
IEEE Access
,
9
, pp.
60258
60264
.
22.
Edelsbrunner
,
H.
,
1994
, “
Simulation of Simplicity: a Technique to Cope With Degenerate Cases in Geometric Algorithms
,”
ACM Trans. Graph.
,
9
(
1
), pp.
66
104
.
23.
Halperin
,
D.
,
2002
, “
Robust Geometric Computing in Motion
,”
Int. J. Rob. Res.
,
21
(
3
), pp.
219
232
.
24.
Kettner
,
L.
,
Mehlhorn
,
K.
,
Pion
,
S.
,
Schirra
,
S.
, and
Yap
,
C.
,
2008
, “
Classroom Examples of Robustness Problems in Geometric Computations
,”
Comput. Geom.: Theory Appl.
,
40
(
1
), pp.
61
78
.
25.
Mehlhorn
,
K.
,
Osbild
,
R.
, and
Sagraloff
,
M.
,
2011
, “
A General Approach to the Analysis of Controlled Perturbation Algorithms
,”
Comput. Geom.
,
44
(
9
), pp.
507
528
.
26.
Sacks
,
E.
,
Milenkovic
,
V.
, and
Kyung
,
M. H.
,
2011
, “
Controlled Linear Perturbation
,”
Comput. Aided Des.
,
43
(
10
), pp.
1250
1257
.
27.
Liang
,
Y. D.
, and
Barsky
,
B. A.
,
1984
, “
A New Concept and Method for Line Clipping
,”
ACM Trans. Graph.
,
3
(
1
), pp.
1
22
.
28.
Newman
,
W. M.
, and
Sproull
,
R. F.
,
1981
,
Principles of Interactive Computer Graphics
, 2nd ed.,
McGraw-Hill. Inc.
,
New York
, pp.
66
67
.
29.
Cyrus
,
M.
, and
Beck
,
J.
,
1978
, “
Generalized Two- and Three-Dimensional Clipping
,”
Comput. Graph.
,
3
(
1
), pp.
23
28
.
30.
Elliriki
,
M.
,
Reddy
,
C.
, and
Anand
,
K.
,
2019
, “
An Efficient Line Clipping Algorithm in 2D Space
,”
Int. Arab. J. Inf. Technol.
,
16
(
5
), pp.
798
807
.
31.
Huang
,
W.
,
2010
, “
Line Clipping Algorithm of Affine Transformation for Polygon
,”
Intelligent Information Management
,
2
(
6
), pp.
380
385
.
32.
Liang
,
D.
,
Barsky
,
B. A.
, and
Slater
,
M.
,
1992
, “
Some Improvements to a Parametric Line Clipping Algorithm
,”
Technical Report No. UCB/CSD 92/688, Computer Science Division, University of California, Berkeley
, pp.
1
22
.
33.
Nicholl
,
T. M.
,
Lee
,
D. T.
, and
Nicholl
,
R. A.
,
1987
, “
An Efficient New Algorithm for 2-D Line Clipping: Its Development and Analysis
,”
ACM SIGGRAPH Computer Graphics
,
21
(
4
), pp.
253
262
.
34.
Evai
,
F.
, et al
,
2005
, “Analysis of the Nicholl-Lee-Nicholl Algorithm,”
Computational Science and Its Applications. ICCSA, 2005. Lecture Notes in Computer Science
,
3480
,
O.
Gervasi
, ed.,
Springer
,
Berlin/Heidelberg
.
35.
Sobkow
,
M. S.
,
Pospisil
,
P.
, and
Yang
,
Y. H.
,
1987
, “
A Fast Two-Dimensional Line Clipping Algorithm via Line Encoding
,”
Comput. Graph.
,
11
(
4
), pp.
459
467
.
36.
Skala
,
V.
,
1994
, “
O (lgN) Line Clipping Algorithm in E2
,”
Comput. Graph.
,
18
(
4
), pp.
517
527
.
37.
Skala
,
V.
,
2005
, “
A New Approach to Line and Line Segment Clipping in Homogeneous Coordinates
,”
Vis. Comput.
,
21
(
11
), pp.
905
914
.
38.
Bi
,
Z.
,
Jin
,
Y.
,
Maropoulos
,
P.
,
Zhang
,
W. J.
,
Luo
,
C.
, and
Wang
,
L.
,
2021
, “
Internet of Things (IoT) and Big Data Analytics (BDA) for Digital Manufacturing (DM)
,”
Int. J. Prod. Res.
,
61
(
12
), pp.
4004
4021
.
39.
Zhang
,
M.
, and
Sabharwal
,
C.
,
2002
, “
An Efficient Implementation of Parametric Line and Polygon Clipping Algorithm
,”
Proceedings of the ACM Symposium on Applied Computing
,
Madrid, Spain
,
March 11
, pp.
796
800
.
40.
Fan
,
L. X.
,
Cai
,
M. Y.
,
Lin
,
Y.
, and
Zhang
,
W. J.
,
2015
, “
Axiomatic Design Theory: Further Notes and Its Guideline to Applications
,”
Int. J. Mater. Prod. Technol.
,
51
(
4
), pp.
359
374
.
41.
Zhao
,
Y.
,
Zhu
,
D.
,
Zhou
,
F.
,
Song
,
J.
, and
Zhang
,
W.
,
2022
, “
An Axiomatic Design Theory for Design of Apparel Products
,”
J. Eng. Fibers Fabr.
,
17
, p.
155892502211343
.
42.
Yu
,
H. Y.
,
He
,
Y. J.
, and
Sun
,
Z. H.
,
2012
, “
A Dimension Reduction Method Based on Projection
,”
The International Conference of Geometry and Graphics
,
Montreal, Canada
,
Aug. 1–5
, pp.
22
26
.
43.
He
,
Y. J.
,
Yu
,
H. Y.
,
Cai
,
H. M.
,
Peng
,
Z. H.
,
Liu
,
W.
, and
Hu
,
Z. P.
,
2022
, “
Shape Computing: A New Geometric Computing Mechanism
,”
J. Geom. Graph.
,
26
(
1
), pp.
101
114
.
You do not currently have access to this content.