Abstract

When designed effectively, support structures play a critical role in quickly dissipating heat and mitigate part distortion without driving up excessive costs within the additive manufacturing metals technique of Laser Powder Bed Fusion (LPBF). Lattices, composed of individual unit cells strategically arranged to achieve a desired function, are a promising solution as a support structure. Prior research utilizing gradient-based optimizers to design lattice support structures for heat dissipation poses challenges regarding limited design domain exploration and non-differentiable objective functions. Non-gradient-based optimizers are an alternative solution but existing optimizers, such as traditional simulated annealing (SA), are known to be more computationally expensive compared to gradient-based optimizers, rendering it challenging to optimize the heat dissipation of lattice support structures. This paper introduces a modified SA-based method to design lattice structures for LPBF by efficiently optimizing the distribution of a library composed of various types of unit cells, thereby creating hybrid lattice support structures (hLSS). A stage-dependent annealing swapping strategy is created and integrated into the method for efficient design domain exploration. Homogenization approximation and equivalent static loading are also performed in each iteration step to make the design optimization process computationally tractable. Two case studies validate the method by designing hLSS for a cantilever beam and a bracket. The results of these case studies show the method's ability to achieve material cost savings of up to 61% and post-processing cost savings of up to 62% when compared to a solid support domain while satisfying manufacturing constraints.

References

1.
Vafadar
,
A.
,
Guzzomi
,
F.
,
Rassau
,
A.
, and
Hayward
,
K.
,
2021
, “
Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges
,”
Appl. Sci.
,
11
(
3
), p.
1213
.
2.
Nazir
,
A.
,
Abate
,
K. M.
,
Kumar
,
A.
, and
Jeng
,
J.-Y.
,
2019
, “
A State-of-the-Art Review on Types, Design, Optimization, and Additive Manufacturing of Cellular Structures
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9
), pp.
3489
3510
.
3.
Wang
,
D.
,
Wei
,
X.
,
Liu
,
J.
,
Xiao
,
Y.
,
Yang
,
Y.
,
Liu
,
L.
,
Tan
,
C.
,
Yang
,
X.
, and
Han
,
C.
,
2022
, “
Lightweight Design of an AlSi10Mg Aviation Control Stick Additively Manufactured by Laser Powder Bed Fusion
,”
Rapid Prototyp. J.
,
28
(
10
), pp.
1869
1881
.
4.
Gouge
,
M.
,
Denlinger
,
E.
,
Irwin
,
J.
,
Li
,
C.
, and
Michaleris
,
P.
,
2019
, “
Experimental Validation of Thermo-Mechanical Part-Scale Modeling for Laser Powder Bed Fusion Processes
,”
Addit. Manuf.
,
29
, p.
100771
.
5.
Grasso
,
M.
, and
Colosimo
,
B. M.
,
2017
, “
Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review
,”
Meas. Sci. Technol.
,
28
(
4
), p.
044005
.
6.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2016
, “
Support Structure Constrained Topology Optimization for Additive Manufacturing
,”
Comput.-Aided Des.
,
81
, pp.
1
13
.
7.
Craeghs
,
T.
,
Clijsters
,
S.
,
Kruth
,
J.-P.
,
Bechmann
,
F.
, and
Ebert
,
M.-C.
,
2012
, “
Detection of Process Failures in Layerwise Laser Melting With Optical Process Monitoring
,”
Phys. Procedia
,
39
, pp.
753
759
.
8.
Chen
,
H.
,
Gu
,
D.
,
Xiong
,
J.
, and
Xia
,
M.
,
2017
, “
Improving Additive Manufacturing Processability of Hard-to-Process Overhanging Structure by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
250
, pp.
99
108
.
9.
Li
,
C.
,
Liu
,
J. F.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2017
, “
Efficient Predictive Model of Part Distortion and Residual Stress in Selective Laser Melting
,”
Addit. Manuf.
,
17
, pp.
157
168
.
10.
Liang
,
X.
,
White
,
L.
,
Cagan
,
J.
,
Rollett
,
A. D.
, and
Zhang
,
Y. J.
,
2023
, “
Unit-Based Design of Cross-Flow Heat Exchangers for LPBF Additive Manufacturing
,”
ASME J. Mech. Des.
,
145
(
1
), p.
012002
.
11.
Ameen
,
W.
,
Mohammed
,
M. K.
,
Al-Ahmari
,
A.
,
Ahmed
,
N.
, and
Mian
,
S. H.
,
2020
, “
Investigation of Support Structure Parameters and Their Affects During Additive Manufacturing of Ti6Al4V Alloy via Electron Beam Melting
,”
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
, p.
1464420720981668
.
12.
Cheng
,
L.
,
Liang
,
X.
,
Bai
,
J.
,
Chen
,
Q.
,
Lemon
,
J.
, and
To
,
A.
,
2019
, “
On Utilizing Topology Optimization to Design Support Structure to Prevent Residual Stress Induced Build Failure in Laser Powder Bed Metal Additive Manufacturing
,”
Addit. Manuf.
,
27
, pp.
290
304
.
13.
Lee
,
K.-H.
, and
Yun
,
G. J.
,
2022
, “
Design Optimization of Thermally Conductive Support Structure for Laser Powder-Bed Fusion Process with Part-Scale Thermal History
,”
Addit. Manuf.
,
51
, p.
102627
.
14.
Bartsch
,
K.
,
Ohrenberg
,
J.
, and
Emmelmann
,
C.
,
2020
, “
Benchmark Parts for the Evaluation of Optimized Support Structures in Laser Powder Bed Fusion of Metals
,”
Procedia CIRP
,
94
, pp.
254
259
.
15.
Triantaphyllou
,
A.
,
Giusca
,
C. L.
,
Macaulay
,
G. D.
,
Roerig
,
F.
,
Hoebel
,
M.
,
Leach
,
R. K.
,
Tomita
,
B.
, and
Milne
,
K. A.
,
2015
, “
Surface Texture Measurement for Additive Manufacturing
,”
Surf. Topogr.: Metrol. Prop.
,
3
(
2
), p.
024002
.
16.
Hao
,
L.
,
Raymont
,
D.
,
Chunze
,
Y.
,
Hussein
,
A.
, and
Young
,
P.
,
2011
, “
Design and Additive Manufacturing of Cellular Lattice Structures
,”
Proceedings of the 5th International Conference on Advanced Research in Virtual and Rapid Prototyping
,
Leiria, Portugal
,
Sept. 18–Oct. 1
, pp
249
254
.
17.
Huang
,
R.
,
Dai
,
N.
,
Cheng
,
X.
, and
Wang
,
L.
,
2020
, “
Topology Optimization of Lattice Support Structures for Heat Conduction in Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
109
(
7–8
), pp.
1841
1851
.
18.
Thomas
,
D.
, and
Gilbert
,
S.
,
2014
, “
Costs and Cost Effectiveness of Additive Manufacturing: A Literature Review and Discussion
,”
NIST Special Publication
1176.
19.
Liang
,
X.
,
To
,
A. C.
,
Du
,
J.
, and
Zhang
,
Y. J.
,
2021
, “
Topology Optimization of Phononic-Like Structures Using Experimental Material Interpolation Model for Additive Manufactured Lattice Infills
,”
Comput. Methods Appl. Mech. Eng.
,
377
, p.
113717
.
20.
Miki
,
T.
, and
Nishiwaki
,
S.
,
2022
, “
Topology Optimization of the Support Structure for Heat Dissipation in Additive Manufacturing
,”
Finite Elem. Anal. Des.
,
203
, p.
103708
.
21.
Malekipour
,
E.
,
Tovar
,
A.
, and
El-Mounayri
,
H.
,
2018
, “
Heat Conduction and Geometry Topology Optimization of Support Structure in Laser-Based Additive Manufacturing
,”
Mechanics of Additive and Advanced Manufacturing, Volume 9, Conference Proceedings of the Society for Experimental Mechanics Series
,
Indianapolis, IN
,
June 12–15
, 2017, Springer, Cham, pp.
17
27
.
22.
Cao
,
Q.
,
Bai
,
Y.
,
Zheng
,
Z.
,
Zhang
,
J.
,
Fuh
,
J. Y. H.
, and
Wang
,
H.
,
2022
, “
Support Removal on Thin-Walled Parts Produced by Laser Powder Bed Fusion
,”
3D Print Addit. Manuf.
,
10
(
4
), pp.
762
775
.
23.
Dbouk
,
T.
,
2017
, “
A Review About the Engineering Design of Optimal Heat Transfer Systems Using Topology Optimization
,”
Appl. Therm. Eng.
,
112
, pp.
841
854
.
24.
Porter
,
J. M.
,
Larsen
,
M. E.
, and
Howell
,
J. R.
,
2005
, “
Discrete Optimization of Radiant Heaters With Simulated Annealing
,”
Proceedings of the ASME 2005 Summer Heat Transfer Conference Collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. Heat Transfer: Volume 3
,
San Francisco, CA
,
July 17–22
, pp.
903
908
.
25.
Eberhard
,
P.
,
Schiehlen
,
W.
, and
Bestle
,
D.
,
1999
, “
Some Advantages of Stochastic Methods in Multicriteria Optimization of Multibody Systems
,”
Arch. Appl. Mech.
,
69
(
8
), pp.
543
554
.
26.
Cheng
,
L.
,
Liu
,
J.
,
Liang
,
X.
, and
To
,
A. C.
,
2018
, “
Coupling Lattice Structure Topology Optimization with Design-Dependent Feature Evolution for Additive Manufactured Heat Conduction Design
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
408
439
.
27.
Xu
,
S.
,
Liu
,
J.
, and
Ma
,
Y.
,
2022
, “
Residual Stress Constrained Self-Support Topology Optimization for Metal Additive Manufacturing
,”
Comput. Methods Appl. Mech. Eng.
,
389
, p.
114380
.
28.
Xiaohui
,
J.
,
Chunbo
,
Y.
,
Honglan
,
G.
,
Shan
,
G.
, and
Yong
,
Z.
,
2022
, “
Effect of Supporting Structure Design on Residual Stresses in Selective Laser Melting of AlSi10Mg
,”
Int. J. Adv. Manuf. Technol.
,
118
(
5–6
), pp.
1597
1608
.
29.
Pellens
,
J.
,
Lombaert
,
G.
,
Michiels
,
M.
,
Craeghs
,
T.
, and
Schevenels
,
M.
,
2020
, “
Topology Optimization of Support Structure Layout in Metal-Based Additive Manufacturing Accounting for Thermal Deformations
,”
Struct. Multidiscip. Optim.
,
61
(
6
), pp.
2291
2303
.
30.
Jiang
,
J.
,
Xu
,
X.
, and
Stringer
,
J.
,
2018
, “
Support Structures for Additive Manufacturing: A Review
,”
J. Manuf. Mater. Process.
,
2
(
4
), p.
64
.
31.
Dos Reis
,
F.
, and
Karathanasopoulos
,
N.
,
2022
, “
Inverse Metamaterial Design Combining Genetic Algorithms With Asymptotic Homogenization Schemes
,”
Int. J. Solids Struct.
,
250
, p.
111702
.
32.
Vaidya
,
R.
, and
Anand
,
S.
,
2016
, “
Optimum Support Structure Generation for Additive Manufacturing Using Unit Cell Structures and Support Removal Constraint
,”
Procedia Manuf.
,
5
, pp.
1043
1059
.
33.
Kuo
,
Y.-H.
,
Cheng
,
C.-C.
,
Lin
,
Y.-S.
, and
San
,
C.-H.
,
2018
, “
Support Structure Design in Additive Manufacturing Based on Topology Optimization
,”
Struct. Multidiscip. Optim.
,
57
(
1
), pp.
183
195
.
34.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.
35.
Chakravorty
,
S.
, and
Nagarur
,
N. N.
,
2023
, “
Simulated Annealing Based Artificial Neural Network For Real Time Dispatching
,”
Proceedings of the 2023 34th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)
,
Saratoga Springs, NY
,
May 1–4
, pp.
1
6
.
36.
Hussein
,
H.
,
Anwar
,
S.
, and
Ahmad
,
M. I.
,
2023
, “
Imbalanced Data Classification Using SVM Based on Improved Simulated Annealing Featuring Synthetic Data Generation and Reduction
,”
Comput. Mater. Contin.
,
75
(
1
), pp.
547
564
.
37.
Stojanović
,
B.
,
Rajić
,
T.
, and
Šošić
,
D.
,
2023
, “
Distribution Network Reconfiguration and Reactive Power Compensation Using a Hybrid Simulated Annealing – Minimum Spanning Tree Algorithm
,”
Int. J. Electr. Power Energy Syst.
,
147
, p.
108829
.
38.
Juman
,
Z. A.
,
Hoque
,
M. A.
, and
Al-Mudahka
,
I.
,
2023
, “
A Hybrid Simulated Annealing Algorithm to Estimate a Better Upper Bound of the Minimal Total Cost of a Transportation Problem With Varying Demands and Supplies
,”
RAIRO-Oper. Res.
,
57
(
2
), pp.
913
926
.
39.
Hayat
,
I.
,
Tariq
,
A.
,
Shahzad
,
W.
,
Masud
,
M.
,
Ahmed
,
S.
,
Ali
,
M. U.
, and
Zafar
,
A.
,
2023
, “
Hybridization of Particle Swarm Optimization With Variable Neighborhood Search and Simulated Annealing for Improved Handling of the Permutation Flow-Shop Scheduling Problem
,”
Systems
,
11
(
5
), p.
221
.
40.
Luo
,
C.
,
Ba
,
J.
, and
Guo
,
Q.
,
2023
, “
Sequential Seismic Anisotropic Inversion for VTI Media With Simulated Annealing Algorithm Aided by Adaptive Setting of Optimization Parameters
,”
Remote Sens.
,
15
(
7
), p.
1891
.
41.
Lee
,
G.
,
Joo
,
Y.
, and
Kim
,
S. J.
,
2021
, “
On the Objective Function for Topology Optimization of Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
,
11
(
11
), pp.
1776
1782
.
42.
Reddy
,
J. N.
, and
Gartling
,
D. K.
,
2010
,
The Finite Element Method in Heat Transfer and Fluid Dynamics
,
CRC Press
,
Bosa Roton, FL
.
43.
Rothwell
,
A.
,
2017
, “Optimization With Finite Element Analysis,”
Optimization Methods in Structural Design
,
A.
Rothwell
, ed.,
Springer International Publishing
,
Cham
, pp.
283
296
.
44.
Vaissier
,
B.
,
Pernot
,
J.-P.
,
Chougrani
,
L.
, and
Véron
,
P.
,
2019
, “
Genetic-Algorithm Based Framework for Lattice Support Structure Optimization in Additive Manufacturing
,”
Comput.-Aided Des.
,
110
, pp.
11
23
.
45.
Langelaar
,
M.
,
2018
, “
Combined Optimization of Part Topology, Support Structure Layout and Build Orientation for Additive Manufacturing
,”
Struct. Multidiscip. Optim.
,
57
(
5
), pp.
1985
2004
.
46.
Boos
,
E.
,
Ihlenfeldt
,
S.
,
Milaev
,
N.
,
Bruns
,
M.
, and
Elsner
,
B. A. M.
,
2023
, “
Simulation-Based Support Generation for Laser Powder Bed Fusion Processes
,”
3D Print Addit. Manuf.
,
10
(
2
), pp.
173
182
.
47.
Zhang
,
Z.-D.
,
Ibhadode
,
O.
,
Ali
,
U.
,
Dibia
,
C. F.
,
Rahnama
,
P.
,
Bonakdar
,
A.
, and
Toyserkani
,
E.
,
2020
, “
Topology Optimization Parallel-Computing Framework Based on the Inherent Strain Method for Support Structure Design in Laser Powder-Bed Fusion Additive Manufacturing
,”
Int. J. Mech. Mater. Des.
,
16
(
4
), pp.
897
923
.
48.
Misiun
,
G.
,
van de Ven
,
E.
,
Langelaar
,
M.
,
Geijselaers
,
H.
,
van Keulen
,
F.
,
van den Boogaard
,
T.
, and
Ayas
,
C.
,
2021
, “
Topology Optimization for Additive Manufacturing With Distortion Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
386
, p.
114095
.
49.
Holmberg
,
E.
,
Torstenfelt
,
B.
, and
Klarbring
,
A.
,
2013
, “
Stress Constrained Topology Optimization
,”
Struct. Multidiscip. Optim.
,
48
(
1
), pp.
33
47
.
50.
Sulaiman
,
S.
,
Hamouda
,
A. M. S.
,
Abedin
,
S.
, and
Osman
,
M. R.
,
2000
, “
Simulation of Metal Filling Progress During the Casting Process
,”
J. Mater. Process. Technol.
,
100
(
1
), pp.
224
229
.
51.
Liang
,
X.
,
Cheng
,
L.
,
Chen
,
Q.
,
Yang
,
Q.
, and
To
,
A. C.
,
2018
, “
A Modified Method for Estimating Inherent Strains From Detailed Process Simulation for Fast Residual Distortion Prediction of Single-Walled Structures Fabricated by Directed Energy Deposition
,”
Addit. Manuf.
,
23
, pp.
471
486
.
52.
Bartsch
,
K.
,
Herzog
,
D.
,
Emmelmann
,
C.
, and
Lange
,
F.
,
2019
, “
A Novel Approach to Support Structures Optimized for Heat Dissipation in SLM by Combining Process Simulation With Topology Optimization
,”
Proceedings of the NAFEMS World Congress
,
Quebec City, Quebec
,
July 2019
. https://www.researchgate.net/publication/335207268.
53.
Subedi
,
S. C.
,
Shahba
,
A.
,
Thevamaran
,
M.
,
Thoma
,
D. J.
, and
Suresh
,
K.
,
2022
, “
Towards the Optimal Design of Support Structures for Laser Powder Bed Fusion-Based Metal Additive Manufacturing via Thermal Equivalent Static Loads
,”
Addit. Manuf.
,
57
, p.
102956
.
54.
Yuan
,
M. G.
, and
Ueda
,
Y.
,
1996
, “
Prediction of Residual Stresses in Welded T- and I-Joints Using Inherent Strains
,”
J. Eng. Mater. Technol.
,
118
(
2
), pp.
229
234
.
55.
Echeta
,
I.
,
Feng
,
X.
,
Dutton
,
B.
,
Leach
,
R.
, and
Piano
,
S.
,
2020
, “
Review of Defects in Lattice Structures Manufactured by Powder Bed Fusion
,”
Int. J. Adv. Manuf. Technol.
,
106
(
5–6
), pp.
2649
2668
.
56.
Liu
,
Y.
,
Zhuo
,
S.
,
Xiao
,
Y.
,
Zheng
,
G.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2020
, “
Rapid Modeling and Design Optimization of Multi-Topology Lattice Structure Based on Unit-Cell Library
,”
J. Mech. Des.
,
142
(
9
), p.
091705
.
57.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization I – Homogenization Theory for Media With Periodic Structure
,”
Comput. Struct.
,
69
(
6
), pp.
707
717
.
58.
Cheng
,
L.
,
Bai
,
J.
, and
To
,
A. C.
,
2019
, “
Functionally Graded Lattice Structure Topology Optimization for the Design of Additive Manufactured Components With Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
334
359
.
59.
Suman
,
B.
, and
Kumar
,
P.
,
2006
, “
A Survey of Simulated Annealing as a Tool for Single and Multiobjective Optimization
,”
J. Oper. Res. Soc.
,
57
(
10
), pp.
1143
1160
.
60.
Triki
,
E.
,
Collette
,
Y.
, and
Siarry
,
P.
,
2005
, “
A Theoretical Study on the Behavior of Simulated Annealing Leading to a New Cooling Schedule
,”
Eur. J. Oper. Res.
,
166
(
1
), pp.
77
92
.
61.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
,
Everson
,
R.
, and
Young
,
P.
,
2013
, “
Advanced Lattice Support Structures for Metal Additive Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1019
1026
.
62.
Chandomí-Castellanos
,
E.
,
Escobar-Gómez
,
E. N.
,
Aguilar Marroquín-Cano
,
S. F.
,
Hernandez-de- León
,
H. R.
,
Velázquez-Trujillo
,
S.
,
Sarmiento-Torres
,
J. A.
, and
de-Coss-Pérez
,
C. V.
,
2022
, “
Modified Simulated Annealing Hybrid Algorithm to Solve the Traveling Salesman Problem
,”
Proceedings of the 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)
,
Istanbul, Turkey
,
May 17–20
, pp.
1536
1541
.
63.
White
,
L.
,
Liang
,
X.
,
Zhang
,
G.
,
Cagan
,
J.
, and
Zhang
,
Y. J.
,
2023
, “
Coupling Simulated Annealing and Homogenization to Design Thermally Conductive Hybrid Lattice Support Structures for LPBF
,”
Proceedings of the ASME IDETC/CIE. DETC2023-114953
,
Boston, MA
,
Aug. 20–23
, p. V002T02A080. .
You do not currently have access to this content.