Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Physics-informed neural networks (PINNs) are a novel approach to solving partial differential equations (PDEs) through deep learning. They offer a unified manner for solving forward and inverse problems, which is beneficial for various engineering problems, including heat transfer analysis. However, traditional PINNs suffer from low accuracy and efficiency due to the fully-connected neural network framework and the method to incorporate physical laws. In this paper, a novel physics-informed learning architecture, named physics-informed fully convolutional networks (PIFCNs), is developed to simultaneously solve forward and inverse problems in thermal conduction. The use of fully convolutional networks (FCNs) significantly reduces the density of connections. Thus, the computational cost is reduced. With the advantage of the nodal-level match between inputs and outputs in FCNs, the output solution can be used directly to formulate discretized PDEs via a finite difference method, which is more accurate and efficient than the traditional approach in PINNs. The results demonstrate that PIFCNs can flexibly implement Dirichlet and Neumann boundary conditions to predict temperature distribution. Remarkably, PIFCNs can also estimate unknown thermal diffusivity with an accuracy exceeding 99%, even with incomplete boundaries and limited sampling data. The results obtained from PIFCNs outperform those obtained from PINNs.

References

1.
Shi
,
T.
,
Xu
,
H.
,
Qi
,
C.
,
Lei
,
B.
,
Wu
,
Y.
, and
Zhao
,
C. Y.
,
2021
, “
Multi-physics Modeling of Thermochemical Heat Storage With Enhance Heat Transfer
,”
Appl. Therm. Eng.
,
198
, p.
117508
.
2.
Liu
,
C. S.
,
Kuo
,
C. L.
, and
Jhao
,
W. S.
,
2016
, “
The Multiple-Scale Polynomial Trefftz Method for Solving Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
95
, pp.
936
943
.
3.
Cui
,
W.
,
Si
,
T.
,
Li
,
X.
,
Li
,
X.
,
Lu
,
L.
,
Ma
,
T.
, and
Wang
,
Q.
,
2022
, “
Heat Transfer Enhancement of Phase Change Materials Embedded With Metal Foam for Thermal Energy Storage: A Review
,”
Renew. Sustain. Energy Rev.
,
169
, p.
112912
.
4.
Jiaqiang
,
E.
,
Luo
,
B.
,
Han
,
D.
,
Chen
,
J.
,
Liao
,
G.
,
Zhang
,
F.
, and
Ding
,
J.
,
2022
, “
A Comprehensive Review on Performance Improvement of Micro Energy Mechanical System: Heat Transfer, Micro Combustion and Energy Conversion
,”
Energy
,
239
, p.
122509
.
5.
Lu
,
Y.
,
Shevtshenko
,
E.
, and
Wang
,
Y.
,
2021
, “
Physics-Based Compressive Sensing to Enable Digital Twins of Additive Manufacturing Processes
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031009
.
6.
Oommen
,
V.
, and
Srinivasan
,
B.
,
2022
, “
Solving Inverse Heat Transfer Problems Without Surrogate Models: A Fast, Data-Sparse, Physics Informed Neural Network Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
041012
.
7.
An
,
Y.-Y.
,
Tu
,
L.-X.
,
Shen
,
H.
,
Xu
,
G.-B.
,
Zhang
,
G.-R.
,
Zhu
,
H.-Q.
, and
Wang
,
H.-C.
,
2021
, “
Numerical Simulation and Validation on Heat Transfer of Four Structures of Sleeping bag
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105707
.
8.
Zheng
,
Q.
,
Braun
,
P. V.
, and
Cahill
,
D. G.
,
2016
, “
Thermal Conductivity of Graphite Thin Films Grown by Low Temperature Chemical Vapor Deposition on Ni (111)
,”
Adv. Mater. Interfaces
,
3
(
16
), p.
1600234
.
9.
Laubscher
,
R.
,
2021
, “
Simulation of Multi-Species Flow and Heat Transfer Using Physics-Informed Neural Networks
,”
Phys. Fluids
,
33
(
8
), p.
087101
.
10.
Chen
,
J. C.
,
Pierce
,
J.
,
Williams
,
G.
,
Simpson
,
T. W.
,
Meisel
,
N.
,
Narra
,
S. P.
, and
McComb
,
C.
,
2024
, “
Accelerating Thermal Simulations in Additive Manufacturing by Training Physics-Informed Neural Networks With Randomly Synthesized Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
1
), p.
011004
.
11.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
12.
Yuan
,
L.
,
Ni
,
Y.-Q.
,
Deng
,
X.-Y.
, and
Hao
,
S.
,
2022
, “
A-PINN: Auxiliary Physics Informed Neural Networks for Forward and Inverse Problems of Nonlinear Integro-Differential Equations
,”
J. Comput. Phys.
,
462
, p.
111260
.
13.
Lou
,
Q.
,
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Solving Forward and Inverse Flow Problems Via the Boltzmann-BGK Formulation
,”
J. Comput. Phys.
,
447
, p.
110676
.
14.
Li
,
X.
,
Chen
,
H.
,
Liu
,
Z.
,
Yan
,
Z.
, and
Zhuang
,
Z.
,
2022
, “
Identifying Varying Thermal Diffusivity of Inhomogeneous Materials Based on a Hybrid Physics-Informed Neural Network
,”
Int. J. Appl. Mech.
,
14
(
07
), p.
2250027
.
15.
Gao
,
H.
,
Zahr
,
M. J.
, and
Wang
,
J.-X.
,
2022
, “
Physics-Informed Graph Neural Galerkin Networks: A Unified Framework for Solving PDE-Governed Forward and Inverse Problems
,”
Comput. Methods Appl. Mech. Eng.
,
390
, p.
114502
.
16.
Wandel
,
N.
,
Weinmann
,
M.
, and
Klein
,
R.
,
2021
, “
Teaching the Incompressible Navier–Stokes Equations to Fast Neural Surrogate Models in Three Dimensions
,”
Phys. Fluids
,
33
(
4
), p.
047117
.
17.
Wang
,
N.
,
Chang
,
H.
, and
Zhang
,
D.
,
2021
, “
Theory-Guided Auto-Encoder for Surrogate Construction and Inverse Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
385
, p.
114037
.
18.
Liu
,
D. H.
, and
Wang
,
Y.
,
2019
, “
Multi-Fidelity Physics-Constrained Neural Network and Its Application in Materials Modeling
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121403
.
19.
Li
,
R.
,
Wang
,
J.-X.
,
Lee
,
E.
, and
Luo
,
T.
,
2022
, “
Physics-Informed Deep Learning for Solving Phonon Boltzmann Transport Equation With Large Temperature Non-Equilibrium
,”
npj Comput. Mater.
,
8
(
1
), p.
29
.
20.
Zhu
,
Q.
,
Liu
,
Z.
, and
Yan
,
J.
,
2021
, “
Machine Learning for Metal Additive Manufacturing: Predicting Temperature and Melt Pool Fluid Dynamics Using Physics-Informed Neural Networks
,”
Comput. Mech.
,
67
(
2
), pp.
619
635
.
21.
He
,
Z.
,
Ni
,
F.
,
Wang
,
W.
, and
Zhang
,
J.
,
2021
, “
A Physics-Informed Deep Learning Method for Solving Direct and Inverse Heat Conduction Problems of Materials
,”
Mater. Today Commun.
,
28
, p.
102719
.
22.
Malashkhia
,
L.
,
Liu
,
D. H.
,
Lu
,
Y. L.
, and
Wang
,
Y.
,
2022
, “
Physics-Constrained Bayesian Neural Network for Bias and Variance Reduction
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
1
), p.
011012
.
23.
Rao
,
C.
,
Sun
,
H.
, and
Liu
,
Y.
,
2020
, “
Physics-Informed Deep Learning for Incompressible Laminar Flows
,”
Theoret. Appl. Mech. Lett.
,
10
(
3
), pp.
207
212
.
24.
Sun
,
L.
,
Gao
,
H.
,
Pan
,
S.
, and
Wang
,
J.-X.
,
2020
, “
Surrogate Modeling for Fluid Flows Based on Physics-Constrained Deep Learning Without Simulation Data
,”
Comput. Methods Appl. Mech. Eng.
,
361
, p.
112732
.
25.
Kissas
,
G.
,
Yang
,
Y.
,
Hwuang
,
E.
,
Witschey
,
W. R.
,
Detre
,
J. A.
, and
Perdikaris
,
P.
,
2020
, “
Machine Learning in Cardiovascular Flows Modeling: Predicting Arterial Blood Pressure From Non-Invasive 4D Flow MRI Data Using Physics-Informed Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
358
, p.
112623
.
26.
Cai
,
S.
,
Li
,
H.
,
Zheng
,
F.
,
Kong
,
F.
,
Dao
,
M.
,
Karniadakis
,
G. E.
, and
Suresh
,
S.
,
2021
, “
Artificial Intelligence Velocimetry and Microaneurysm-on-a-Chip for Three-Dimensional Analysis of Blood Flow in Physiology and Disease
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
13
), p.
e2100697118
.
27.
Arzani
,
A.
,
Wang
,
J.-X.
, and
D'Souza
,
R. M.
,
2021
, “
Uncovering Near-Wall Blood Flow From Sparse Data With Physics-Informed Neural Networks
,”
Phys. Fluids
,
33
(
7
), p.
071905
.
28.
Wight
,
C. L.
, and
Zhao
,
J.
,
2021
, “
Solving Allen-Cahn and Cahn-Hilliard Equations Using the Adaptive Physics Informed Neural Networks
,”
Commun. Comput. Phys.
,
29
(
3
), pp.
930
954
.
29.
Mattey
,
R.
, and
Ghosh
,
S.
,
2022
, “
A Novel Sequential Method to Train Physics Informed Neural Networks for Allen Cahn and Cahn Hilliard Equations
,”
Comput. Methods Appl. Mech. Eng.
,
390
, p.
114474
.
30.
Zhu
,
Y. H.
,
Zabaras
,
N.
,
Koutsourelakis
,
P. S.
, and
Perdikaris
,
P.
,
2019
, “
Physics-Constrained Deep Learning for High-Dimensional Surrogate Modeling and Uncertainty Quantification Without Labeled Data
,”
J. Comput. Phys.
,
394
, pp.
56
81
.
31.
Chiu
,
P.-H.
,
Wong
,
J. C.
,
Ooi
,
C.
,
Dao
,
M. H.
, and
Ong
,
Y.-S.
,
2022
, “
CAN-PINN: A Fast Physics-Informed Neural Network Based on Coupled-Automatic–Numerical Differentiation Method
,”
Comput. Methods Appl. Mech. Eng.
,
395
, p.
114909
.
32.
Wang
,
S.
,
Yu
,
X.
, and
Perdikaris
,
P.
,
2022
, “
When and Why PINNs Fail to Train: A Neural Tangent Kernel Perspective
,”
J. Comput. Phys.
,
449
, p.
110768
.
33.
Xiang
,
Z.
,
Peng
,
W.
,
Liu
,
X.
, and
Yao
,
W.
,
2022
, “
Self-Adaptive Loss Balanced Physics-Informed Neural Networks
,”
Neurocomputing
,
496
, pp.
11
34
.
34.
Liu
,
D.
, and
Wang
,
Y.
,
2021
, “
A Dual-Dimer Method for Training Physics-Constrained Neural Networks With Minimax Architecture
,”
Neural Netw.
,
136
, pp.
112
125
.
35.
Liu
,
D.
,
Pusarla
,
P.
, and
Wang
,
Y.
,
2023
, “
Multifidelity Physics-Constrained Neural Networks With Minimax Architecture
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031008
.
36.
Liebel
,
L.
, and
Körner
,
M.
,
2018
,
Auxiliary Tasks in Multi-Task Learning
. arXiv preprint arXiv: 2018, p 1805.06334.
37.
Sun
,
W.
, and
Wang
,
R.
,
2018
, “
Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images Combined With DSM
,”
IEEE Geosci. Rem. Sens. Lett.
,
15
(
3
), pp.
474
478
.
38.
Yu
,
Y.
,
Minhaj
,
T.
,
Huang
,
L.
,
Yu
,
Y.
, and
Cao
,
L.
,
2020
, “
In-Plane and Interfacial Thermal Conduction of Two-Dimensional Transition-Metal Dichalcogenides
,”
Phys. Rev. Appl.
,
13
(
3
), p.
034059
.
You do not currently have access to this content.