Abstract

We propose a novel method for solving partial differential equations using multi-fidelity physics-informed generative adversarial networks. Our approach incorporates physics supervision into the adversarial optimization process to guide the learning of the generator and discriminator models. The generator has two components: one that approximates the low-fidelity response of the input and another that combines the input and low-fidelity response to generate an approximation of high-fidelity responses. The discriminator identifies whether the input–output pairs accord not only with the actual high-fidelity response distribution, but also with physics. The effectiveness of the proposed method is demonstrated through numerical examples and compared to existing methods.

References

1.
Ames
,
W. F.
,
2014
,
Numerical Methods for Partial Differential Equations
,
Academic Press
,
New York
.
2.
Bouttier
,
F.
, and
Courtier
,
P.
,
2002
,
Data Assimilation Concepts and Methods
,
European Centre for Medium-Range Weather Forecast
,
Reading, UK
.
3.
Lagergren
,
J. H.
,
Nardini
,
J. T.
,
Michael Lavigne
,
G.
,
Rutter
,
E. M.
, and
Flores
,
K. B.
,
2020
, “
Learning Partial Differential Equations for Biological Transport Models From Noisy Spatio-Temporal Data
,”
Proc. R. Soc. A
,
476
(
2234
), p.
20190800
.
4.
Zhang
,
J.
, and
Ma
,
W.
,
2020
, “
Data-Driven Discovery of Governing Equations for Fluid Dynamics Based on Molecular Simulation
,”
J. Fluid. Mech.
,
892
, p.
A5
.
5.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
6.
Raissi
,
M.
,
Yazdani
,
A.
, and
Karniadakis
,
G. E.
,
2020
, “
Hidden Fluid Mechanics: Learning Velocity and Pressure Fields From Flow Visualizations
,”
Science
,
367
(
6481
), pp.
1026
1030
.
7.
Cai
,
S.
,
Mao
,
Z.
,
Wang
,
Z.
,
Yin
,
M.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks (PINNs) for Fluid Mechanics: A Review
,”
Acta Mech. Sin.
,
37
(
12
), pp.
1727
1738
.
8.
Shukla
,
K.
,
Di Leoni
,
P. C.
,
Blackshire
,
J.
,
Sparkman
,
D.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking Cracks
,”
ASME J. Nondestructive Evaluat.
,
39
(
3
), pp.
1
20
.
9.
Yin
,
M.
,
Zheng
,
X.
,
Humphrey
,
J. D.
, and
Karniadakis
,
G. E.
,
2021
, “
Non-Invasive Inference of Thrombus Material Properties With Physics-Informed Neural Networks
,”
Comput. Meth. Appl. Mech. Eng.
,
375
, p.
113603
.
10.
Janssen
,
J.
,
Haikal
,
G.
,
DeCarlo
,
E.
,
Hartnett
,
M.
, and
Kirby
,
M.
,
2023
, “
A Physics-Informed General Convolutional Network for the Computational Modeling of Materials With Damage
,”
ASME J. Comput. Inf. Sci. Eng.
10
, pp.
1
67
.
11.
Yang
,
L.
,
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2021
, “
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse Pde Problems With Noisy Data
,”
J. Comput. Phys.
,
425
, p.
109913
.
12.
Yu
,
J.
,
Lu
,
L.
,
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2022
, “
Gradient-Enhanced Physics-Informed Neural Networks for Forward and Inverse PDE Problems
,”
Comput. Meth. Appl. Mech. Eng.
,
393
, p.
114823
.
13.
Oommen
,
V.
, and
Srinivasan
,
B.
,
2022
, “
Solving Inverse Heat Transfer Problems Without Surrogate Models: A Fast, Data-Sparse, Physics Informed Neural Network Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
041012
.
14.
He
,
Q.
,
Barajas-Solano
,
D.
,
Tartakovsky
,
G.
, and
Tartakovsky
,
A. M.
,
2020
, “
Physics-Informed Neural Networks for Multiphysics Data Assimilation With Application to Subsurface Transport
,”
Adv. Water Res.
,
141
, p.
103610
.
15.
Tartakovsky
,
A. M.
,
Marrero
,
C. O.
,
Perdikaris
,
P.
,
Tartakovsky
,
G. D.
, and
Barajas-Solano
,
D.
,
2020
, “
Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems
,”
Water Resour. Res.
56
(
5
), p.
e2019WR026731
.
16.
Nabian
,
M. A.
, and
Meidani
,
H.
,
2020
, “
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011006
.
17.
Fernández-Godino
,
M. G.
,
Park
,
C.
,
Kim
,
N. -H.
, and
Haftka
,
R. T.
,
2016
, “
Review of Multi-fidelity Models
,” preprint arXiv:1609.07196.
18.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
Siam Rev.
,
60
(
3
), pp.
550
591
.
19.
Vitali
,
R.
,
Haftka
,
R. T.
, and
Sankar
,
B. V.
,
2002
, “
Multi-fidelity Design of Stiffened Composite Panel With a Crack
,”
Struct. Multidiscipl. Optim.
,
23
(
5
), pp.
347
356
.
20.
Pidaparthi
,
B.
, and
Missoum
,
S.
,
2022
, “
A Multi-fidelity Approach for Reliability Assessment Based on the Probability of Classification Inconsistency
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
1
), p.
011008
.
21.
Padron
,
A. S.
,
Alonso
,
J. J.
, and
Eldred
,
M. S.
,
2016
, “
Multi-Fidelity Methods in Aerodynamic Robust Optimization
,”
Eighteenth AIAA Non-Deterministic Approaches Conference
,
San Diego, CA
,
Jan. 4–8
, p.
0680
.
22.
Alemazkoor
,
N.
,
Louhghalam
,
A.
, and
Tootkaboni
,
M.
,
2022
, “
A Multi-fidelity Polynomial Chaos-Greedy Kaczmarz Approach for Resource-Efficient Uncertainty Quantification on Limited Budget
,”
Comput. Meth. Appl. Mech. Eng.
,
389
, p.
114290
.
23.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Inferring Solutions of Differential Equations Using Noisy Multi-fidelity Data
,”
J. Comput. Phys.
,
335
, pp.
736
746
.
24.
Perdikaris
,
P.
,
Raissi
,
M.
,
Damianou
,
A.
,
Lawrence
,
N. D.
, and
Karniadakis
,
G. E.
,
2017
, “
Nonlinear Information Fusion Algorithms for Data-Efficient Multi-fidelity Modelling
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2198
), p.
20160751
.
25.
Alemazkoor
,
N.
, and
Meidani
,
H.
,
2021
, “
A Data-Driven Multi-fidelity Approach for Traffic State Estimation Using Data From Multiple Sources
,”
IEEE Access
,
9
, pp.
78128
78137
.
26.
Raissi
,
M.
, and
Karniadakis
,
G.
,
2016
, “
Deep Multi-fidelity Gaussian Processes
,” preprint arXiv:1604.07484.
27.
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2020
, “
A Composite Neural Network That Learns From Multi-fidelity Data: Application to Function Approximation and Inverse PDE Problems
,”
J. Comput. Phys.
,
401
, p.
109020
.
28.
Liu
,
D.
, and
Wang
,
Y.
,
2019
, “
Multi-Fidelity Physics-Constrained Neural Network and Its Application in Materials Modeling
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121403
.
29.
Zhang
,
X.
,
Xie
,
F.
,
Ji
,
T.
,
Zhu
,
Z.
, and
Zheng
,
Y.
,
2021
, “
Multi-fidelity Deep Neural Network Surrogate Model for Aerodynamic Shape Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
373
, p.
113485
.
30.
Regazzoni
,
F.
,
Pagani
,
S.
,
Cosenza
,
A.
,
Lombardi
,
A.
, and
Quarteroni
,
A.
,
2021
, “
A Physics-Informed Multi-fidelity Approach for the Estimation of Differential Equations Parameters in Low-Data or Large-Noise Regimes
,”
Rend. Lincei
,
32
(
3
), pp.
437
470
.
31.
Liu
,
D.
,
Pusarla
,
P.
, and
Wang
,
Y.
,
2023
, “
Multifidelity Physics-Constrained Neural Networks With Minimax Architecture
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031008
.
32.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2020
, “
Generative Adversarial Networks
,”
Commun. ACM
,
63
(
11
), pp.
139
144
.
33.
Liu
,
L.
,
Song
,
X.
,
Zhang
,
C.
, and
Tao
,
D.
,
2022
, “
GAN-MDF: An Enabling Method for Multi-fidelity Data Fusion
,”
IEEE Int. Things J.
,
9
(
15
), pp.
13405
13415
.
34.
Zhang
,
C.
,
Liu
,
L.
,
Wang
,
H.
,
Song
,
X.
, and
Tao
,
D.
,
2022
, “
SCGAN: Stacking-Based Generative Adversarial Networks for Multi-fidelity Surrogate Modeling
,”
Struct. Multidiscipl. Optim.
,
65
(
6
), pp.
1
16
.
35.
Yang
,
Y.
, and
Perdikaris
,
P.
,
2019
, “
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
,”
J. Comput. Phys.
,
394
, pp.
136
152
.
36.
Gao
,
Y.
, and
Ng
,
M. K.
,
2022
, “
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
,”
J. Comput. Phys.
,
463
, p.
111270
.
37.
Li
,
M.
, and
McComb
,
C.
,
2022
, “
Using Physics-Informed Generative Adversarial Networks to Perform Super-Resolution for Multiphase Fluid Simulations
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
044501
.
38.
Daw
,
A.
,
Maruf
,
M.
, and
Karpatne
,
A.
,
2021
, “
PID-GAN: A GAN Framework Based on a Physics-Informed Discriminator for Uncertainty Quantification With Physics
,”
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
,
Singapore
,
Aug. 14–18
, pp.
237
247
.
39.
Nabian
,
Mohammad Amin
,
2020
,
Scientific deep learning for efficient modeling and uncertainty quantification in engineering systems
,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
40.
Wang
,
S.
,
Teng
,
Y.
, and
Perdikaris
,
P.
,
2021
, “
Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural Networks
,”
SIAM J. Sci. Comput.
,
43
(
5
), pp.
A3055
A3081
.
41.
Bischof
,
R.
, and
Kraus
,
M.
,
2021
, “
Multi-objective Loss Balancing for Physics-Informed Deep Learning
,” preprint arXiv:2110.09813
42.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
43.
Babaee
,
H.
,
Perdikaris
,
P.
,
Chryssostomidis
,
C.
, and
Karniadakis
,
G.
,
2016
, “
Multi-fidelity Modelling of Mixed Convection Based on Experimental Correlations and Numerical Simulations
,”
J. Fluid. Mech.
,
809
, pp.
895
917
.
44.
Mirza
,
M.
, and
Osindero
,
S.
,
2014
, “
Conditional Generative Adversarial Nets
,” preprint arXiv:1411.1784.
45.
Brock
,
A.
,
Donahue
,
J.
, and
Simonyan
,
K.
,
2018
, “
Large Scale GAN Training for High Fidelity Natural Image Synthesis
,” preprint arXiv:1809.11096.
46.
Ma
,
S.
,
Fu
,
J.
,
Chen
,
C. W.
, and
Mei
,
T.
,
2018
, “
DA-GAN: Instance-Level Image Translation by Deep Attention Generative Adversarial Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 19–21
,
pp. 5657–5666
.
47.
Doctorarastoo
,
M.
,
Flanigan
,
K. A.
,
Bergés
,
M.
, and
McComb
,
C.
,
2023
, “
Modeling Human Behavior in Cyber-Physical-Social Infrastructure Systems
,”
Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys ’23)
,
Istanbul, Turkey
,
Nov. 15–16
, pp.
370
376
.
48.
Doctorarastoo
,
M.
,
Flanigan
,
K. A.
,
Bergés
,
M.
, and
McComb
,
C.
,
2023
, “
Exploring the Potentials and Challenges of Cyber-Physical-Social Infrastructure Systems for Achieving Human-Centered Objectives
,”
Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys ’23)
,
Istanbul, Turkey
,
Nov. 15–16
, pp.
385
389
.
49.
Salimans
,
T.
,
Goodfellow
,
I.
,
Zaremba
,
W.
,
Cheung
,
V.
,
Radford
,
A.
, and
Chen
,
X.
,
2016
, “
Improved Techniques for Training GANS
,”
30th Conference on Neural Information Processing Systems
,
Barcelona, Spain
,
Dec. 5–8
, pp.
2234
2242
.
50.
Li
,
C.
,
Bai
,
K.
,
Li
,
J.
,
Wang
,
G.
,
Chen
,
C.
, and
Carin
,
L.
,
2019
, “
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
,”
The 22nd International Conference on Artificial Intelligence and Statistics
,
Naha, Okinawa, Japan
,
Apr. 16–18
, pp.
3302
3311
.
51.
Zhu
,
J.-Y.
,
Park
,
T.
,
Isola
,
P.
, and
Efros
,
A. A.
,
2017
, “
Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Venice, Italy
,
Oct. 22–29
,
pp. 2242–2251
.
52.
Baydin
,
A. G.
,
Pearlmutter
,
B. A.
,
Radul
,
A. A.
, and
Siskind
,
J. M.
,
2018
, “
Automatic Differentiation in Machine Learning: a Survey
,”
J. March. Learn. Res.
,
18
(
1
), pp.
5595
5637
.
53.
Gladstone
,
R. J.
,
Nabian
,
M. A.
, and
Meidani
,
H.
,
2022
, “
FO-PINNS: A First-Order Formulation for Physics Informed Neural Networks
,” preprint arXiv:2210.14320.
54.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” preprint arXiv:1412.6980.
55.
Battles
,
Z.
, and
Trefethen
,
L. N.
,
2004
, “
An Extension of Matlab to Continuous Functions and Operators
,”
SIAM J. Sci. Comput.
,
25
(
5
), pp.
1743
1770
.
You do not currently have access to this content.