Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Industrial robots generate monitoring data rich in sensitive information, often making enterprises reluctant to share, which impedes the use of data in fault diagnosis modeling. Dataset distillation (DD) is an effective approach to condense large dataset into smaller, synthesized forms, focusing solely on fault-related features, which facilitates secure and efficient data transfer for diagnostic purposes. However, the challenge of achieving satisfactory fault diagnosis accuracy with distilled data stems from the computational complexity in data distillation process. To address this problem, this article proposes a modified KernelWarehouse (MKW) network-based DD method to achieve accurate fault diagnosis with the distilled dataset. In this algorithm, DD first generates distilled training and testing dataset, followed by the training of an MKW-based network based on these distilled datasets. Specifically, MKW reduces network complexity through the division of static kernels into disjoint kernel cells, which are then computed as linear mixtures from a shared warehouse. An experimental study based on the real-world robotic dataset reveals the effectiveness of the proposed approach. The experimental results indicate that the proposed method can achieve a fault diagnosis accuracy of 86.3% when only trained with distilled data.

References

1.
Parto
,
M.
,
Urbina Coronado
,
P. D.
,
Saldana
,
C.
, and
Kurfess
,
T.
,
2021
, “
Cyber-Physical System Implementation for Manufacturing With Analytics in the Cloud Layer
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
1
), p.
011011
.
2.
Li
,
W.
,
Zhong
,
X.
,
Shao
,
H.
,
Cai
,
B.
, and
Yang
,
X.
,
2022
, “
Multi-Mode Data Augmentation and Fault Diagnosis of Rotating Machinery Using Modified ACGAN Designed With New Framework
,”
Adv. Eng. Inform.
,
52
.
3.
Xiao
,
Y.
,
Shao
,
H.
,
Wang
,
J.
,
Yan
,
S.
,
Liu
,
B. J. M. S.
, and
Processing
,
S.
,
2024
, “
Bayesian Variational Transformer: A Generalizable Model for Rotating Machinery Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
207
.
4.
Luo
,
J.
,
Shao
,
H.
,
Lin
,
J.
, and
Liu
,
B.
,
2024
, “
Meta-Learning With Elastic Prototypical Network for Fault Transfer Diagnosis of Bearings Under Unstable Speeds
,”
Reliab. Eng. Syst. Saf.
,
245
.
5.
Chen
,
C.
,
Wang
,
T.
,
Liu
,
C.
,
Liu
,
Y.
, and
Cheng
,
L.
,
2023
, “
Lightweight Convolutional Transformers Enhanced Meta Learning for Compound Fault Diagnosis of Industrial Robot
,”
IEEE Trans. Instrum. Meas.
,
72
, pp.
1
12
.
6.
Shao
,
H.
,
Zhou
,
X.
,
Lin
,
J.
, and
Liu
,
B.
,
2024
, “
Few-Shot Cross-Domain Fault Diagnosis of Bearing Driven by Task-Supervised ANIL
,”
IEEE Internet Things J.
,
11
(
13
), pp.
22892
22902
.
7.
Chen
,
C.
,
Liu
,
C.
,
Wang
,
T.
,
Zhang
,
A.
,
Wu
,
W.
, and
Cheng
,
L.
,
2023
, “
Compound Fault Diagnosis for Industrial Robots Based on Dual-Transformer Networks
,”
J. Manuf. Syst.
,
66
, pp.
163
178
.
8.
Lee
,
H.
,
Finke
,
D.
, and
Yang
,
H.
,
2024
, “
Privacy-Preserving Neural Networks for Smart Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
7
), p.
071002
.
9.
Ranathunga
,
T.
,
McGibney
,
A.
,
Rea
,
S.
, and
Bharti
,
S.
,
2022
, “
Blockchain-Based Decentralized Model Aggregation for Cross-Silo Federated Learning in Industry 4.0
,”
IEEE Internet Things J.
,
10
(
5
), pp.
4449
4461
.
10.
Shi
,
M.
,
Ding
,
C.
,
Chang
,
S.
,
Wang
,
R.
,
Huang
,
W.
, and
Zhu
,
Z.
,
2023
, “
Cross-Domain Privacy-Preserving Broad Network for Fault Diagnosis of Rotating Machinery
,”
Adv. Eng. Inform.
,
58
.
11.
Wang
,
T.
,
Zhu
,
J.-Y.
,
Torralba
,
A.
, and
Efros
,
A. A.
,
2018
, “Dataset distillation,” arXiv preprint arXiv:1811.10959.
12.
Dong
,
T.
,
Zhao
,
B.
, and
Lyu
,
L.
,
2022
, “
Privacy for Free: How Does Dataset Condensation Help Privacy?
Proceedings of the 39th International Conference on Machine Learning
,
Baltimore, MD
,
July 17–23
, PMLR, pp.
5378
5396
.
13.
Yun
,
J.
,
Jiang
,
D.
,
Liu
,
Y.
,
Sun
,
Y.
,
Tao
,
B.
,
Kong
,
J.
,
Tian
,
J.
,
Tong
,
X.
,
Xu
,
M.
, and
Fang
,
Z.
,
2022
, “
Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network
,”
Front. Bioeng. Biotechnol.
,
10
.
14.
Li
,
C.
, and
Yao
,
A.
,
2023
, “KernelWarehouse: Towards Parameter-Efficient Dynamic Convolution,” arXiv preprint arXiv:2308.08361.
15.
Dwork
,
C.
,
2006
, “
Differential Privacy
,”
Proceedings of the International Colloquium on Automata, Languages, and Programming
,
Venice, Italy
,
July 10–14
, Springer, pp.
1
12
.
16.
Dwork
,
C.
,
McSherry
,
F.
,
Nissim
,
K.
, and
Smith
,
A.
,
2006
, “
Calibrating Noise to Sensitivity in Private Data Analysis
,”
Theory of Cryptography: Third Theory of Cryptography Conference, TCC. Proceedings 3
,
New York
,
Mar. 4–7
,
Springer
, pp.
265
284
.
17.
Cheu
,
A.
,
Smith
,
A.
,
Ullman
,
J.
,
Zeber
,
D.
, and
Zhilyaev
,
M.
,
2019
, “
Distributed Differential Privacy via Shuffling
,”
Advances in Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings, Part I 38
,
Darmstadt, Germany
,
May 19–23
,
Springer
, pp.
375
403
.
18.
Truex
,
S.
,
Baracaldo
,
N.
,
Anwar
,
A.
,
Steinke
,
T.
,
Ludwig
,
H.
,
Zhang
,
R.
, and
Zhou
,
Y.
,
2019
, “
A Hybrid Approach to Privacy-Preserving Federated Learning
,”
Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security
,
London, UK
,
Nov. 15
, pp.
1
11
.
19.
Liu
,
X.
,
Li
,
H.
,
Xu
,
G.
,
Chen
,
Z.
,
Huang
,
X.
, and
Lu
,
R.
,
2021
, “
Privacy-Enhanced Federated Learning Against Poisoning Adversaries
,”
IEEE Trans. Inf. Forensics Secur.
,
16
, pp.
4574
4588
.
20.
Wei
,
K.
,
Li
,
J.
,
Ding
,
M.
,
Ma
,
C.
,
Su
,
H.
,
Zhang
,
B.
, and
Poor
,
H. V.
,
2021
, “
User-Level Privacy-Preserving Federated Learning: Analysis and Performance Optimization
,”
IEEE Trans. Mob. Comput.
,
21
(
9
), pp.
3388
3401
.
21.
Wu
,
X.
,
Zhang
,
Y.
,
Shi
,
M.
,
Li
,
P.
,
Li
,
R.
, and
Xiong
,
N. N.
,
2022
, “
An Adaptive Federated Learning Scheme With Differential Privacy Preserving
,”
Future Gener. Comput. Syst.
,
127
, pp.
362
372
.
22.
Zhao
,
Y.
,
Zhao
,
J.
,
Jiang
,
L.
,
Tan
,
R.
,
Niyato
,
D.
,
Li
,
Z.
,
Lyu
,
L.
, and
Liu
,
Y.
,
2020
, “
Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices
,”
IEEE Internet Things J.
,
8
(
3
), pp.
1817
1829
.
23.
Mehta
,
M.
, and
Shao
,
C.
,
2022
, “
Federated Learning-Based Semantic Segmentation for Pixel-Wise Defect Detection in Additive Manufacturing
,”
J. Manuf. Syst.
,
64
, pp.
197
210
.
24.
Chen
,
S.
,
Yu
,
D.
,
Zou
,
Y.
,
Yu
,
J.
, and
Cheng
,
X.
,
2022
, “
Decentralized Wireless Federated Learning With Differential Privacy
,”
IEEE Trans. Ind. Inf.
,
18
(
9
), pp.
6273
6282
.
25.
Wu
,
X.
,
Qi
,
L.
,
Gao
,
J.
,
Ji
,
G.
, and
Xu
,
X.
,
2022
, “
An Ensemble of Random Decision Trees With Local Differential Privacy in Edge Computing
,”
Neurocomputing
,
485
, pp.
181
195
.
26.
Chen
,
D.
,
Kerkouche
,
R.
, and
Fritz
,
M.
,
2022
, “
Private Set Generation With Discriminative Information
,”
Proceedings of the 36th International Conference on Neural Information Processing Systems
,
New Orleans, LA
,
Nov. 28–Dec. 9
.
27.
Zhou
,
Y.
,
Nezhadarya
,
E.
, and
Ba
,
J.
,
2022
, “
Dataset Distillation Using Neural Feature Regression
,”
Proceedings of the 36th International Conference on Neural Information Processing Systems
,
Red Hook, NY
,
Nov. 28–Dec. 9
.
28.
Nguyen
,
T.
,
Chen
,
Z.
, and
Lee
,
J.
,
2020
, “Dataset Meta-Learning From Kernel Ridge-Regression,” arXiv preprint arXiv:2011.00050.
29.
Zhao
,
B.
,
Mopuri
,
K. R.
, and
Bilen
,
H.
,
2020
, “Dataset Condensation With Gradient Matching,” arXiv preprint arXiv:2006.05929.
30.
Zhao
,
G.
,
Li
,
G.
,
Qin
,
Y.
, and
Yu
,
Y.
,
2023
, “
Improved Distribution Matching for Dataset Condensation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Vancouver, Canada
,
June 18–22
, pp.
7856
7865
.
31.
Cazenavette
,
G.
,
Wang
,
T.
,
Torralba
,
A.
,
Efros
,
A. A.
, and
Zhu
,
J.-Y.
,
2022
, “
Dataset Distillation by Matching Training Trajectories
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 21–24
, pp.
4750
4759
.
32.
Li
,
Z.
,
Liu
,
F.
,
Yang
,
W.
,
Peng
,
S.
, and
Zhou
,
J.
,
2021
, “
A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
33
(
12
), pp.
6999
7019
.
33.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
ImageNet Classification with Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
34.
Zhu
,
F.
,
Liu
,
C.
,
Yang
,
J.
, and
Wang
,
S.
,
2022
, “
An Improved MobileNet Network With Wavelet Energy and Global Average Pooling for Rotating Machinery Fault Diagnosis
,”
Sensors
,
22
(
12
), p.
4427
.
35.
Luo
,
Z.
,
Tan
,
H.
,
Dong
,
X.
,
Zhu
,
G.
, and
Li
,
J.
,
2022
, “
A Fault Diagnosis Method for Rotating Machinery With Variable Speed Based on Multi-Feature Fusion and Improved ShuffleNet V2
,”
Meas. Sci. Technol.
,
34
(
3
), p.
035110
.
36.
Iandola
,
F. N.
,
Han
,
S.
,
Moskewicz
,
M. W.
,
Ashraf
,
K.
,
Dally
,
W. J.
, and
Keutzer
,
K.
,
2016
, “SqueezeNet: AlexNet-Level Accuracy With 50× Fewer Parameters and <0.5 MB Model Size,” arXiv preprint arXiv:1602.07360.
37.
Wang
,
Y.
,
Yan
,
J.
,
Sun
,
Q.
,
Zhao
,
Y.
, and
Liu
,
T.
,
2021
, “
ShuffleNet-Based Comprehensive Diagnosis for Insulation and Mechanical Faults of Power Equipment
,”
High Voltage
,
6
(
5
), pp.
861
872
.
38.
Zhong
,
H.
,
Lv
,
Y.
,
Yuan
,
R.
, and
Yang
,
D.
,
2022
, “
Bearing Fault Diagnosis Using Transfer Learning and Self-Attention Ensemble Lightweight Convolutional Neural Network
,”
Neurocomputing
,
501
, pp.
765
777
.
39.
Gidaris
,
S.
, and
Komodakis
,
N.
,
2018
, “
Dynamic Few-Shot Visual Learning Without Forgetting
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–22
, pp.
4367
4375
.
40.
Hassani
,
A.
,
Walton
,
S.
,
Shah
,
N.
,
Abuduweili
,
A.
,
Li
,
J.
, and
Shi
,
H.
,
2021
, “Escaping the Big Data Paradigm With Compact Transformers,” arXiv preprint arXiv:2104.05704.
41.
Dosovitskiy
,
A.
,
Beyer
,
L.
,
Kolesnikov
,
A.
,
Weissenborn
,
D.
,
Zhai
,
X.
,
Unterthiner
,
T.
,
Dehghani
,
M.
,
Minderer
,
M.
,
Heigold
,
G.
, and
Gelly
,
S.
,
2020
, “An Image Is Worth 16×16 Words: Transformers for Image Recognition at Scale,” arXiv preprint arXiv:2010.11929.
42.
Liu
,
Z.
,
Mao
,
H.
,
Wu
,
C.-Y.
,
Feichtenhofer
,
C.
,
Darrell
,
T.
, and
Xie
,
S.
,
2022
, “
A Convnet for the 2020s
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 21–24
, pp. 11976—11986.
43.
Sandler
,
M.
,
Howard
,
A.
,
Zhu
,
M.
,
Zhmoginov
,
A.
, and
Chen
,
L.-C.
,
2018
, “
Mobilenetv2: Inverted Residuals and Linear Bottlenecks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–22
, pp.
4510
4520
..
44.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 26– July 1
, pp.
770
778
..
You do not currently have access to this content.