Abstract

Designing an excellent hull to reduce the sailing path energy consumption of UUVs is crucial for improving the energy endurance of UUVs. However, path energy consumption-based UUV hull design requires a tremendous amount of calculation due to the frequent changes in relative velocity and attack angle between a UUV and ocean current. In order to address this issue, this work developed a data-driven design methodology for energy consumption-based UUV hull design using artificial intelligence-aided design (AIAD). The design methodology in this work combined a deep learning (DL) algorithm that predicts UUVs’ resistance with different hull shapes under different velocities and attack angles with the particle swarm optimization (PSO) algorithm for UUV hull design. We tested the proposed methodology in a path energy consumption-based experiment, where the optimized UUV hull showed an 8.8% reduction in path energy consumption compared with the initial UUV hull, and design costs were greatly reduced compared with the traditional computational fluid dynamics (CFD)-based methodology. Our work demonstrates that AIAD has the potential to solve UUV design problems previously thought to be too complex by offering a data-driven engineering shape (body surface) design method.

References

1.
Gafurov
,
S. A.
, and
Klochkov
,
E. V.
,
2015
, “
Autonomous Unmanned Underwater Vehicles Development Tendencies
,”
Procedia Eng.
,
106
, pp.
141
148
.
2.
Wang
,
X.
,
Shang
,
J.
,
Luo
,
Z.
,
Tang
,
L.
,
Zhang
,
X.
, and
Li
,
J.
,
2012
, “
Reviews of Power Systems and Environmental Energy Conversion for Unmanned Underwater Vehicles
,”
Renew. Sustain. Energy Rev.
,
16
(
4
), pp.
1958
1970
.
3.
Alvarez
,
A.
,
Bertram
,
V.
, and
Gualdesi
,
L.
,
2009
, “
Hull Hydrodynamic Optimization of Autonomous Underwater Vehicles Operating at Snorkeling Depth
,”
Ocean Eng.
,
36
(
1
), pp.
105
112
.
4.
Joung
,
T.
,
Sammut
,
K.
,
He
,
F.
, and
Lee
,
S.
,
2012
, “
Shape Optimization of an Autonomous Underwater Vehicle With a Ducted Propeller Using Computational Fluid Dynamics Analysis
,”
Int. J. Nav. Arch. Ocean Eng.
,
4
(
1
), pp.
44
56
.
5.
Alam
,
K.
,
Ray
,
T.
, and
Anavatti
,
S. G.
,
2014
, “
Design and Construction of an Autonomous Underwater Vehicle
,”
Neurocomputing
,
142
(
SI
), pp.
16
29
.
6.
Gao
,
T.
,
Wang
,
Y.
,
Pang
,
Y.
, and
Cao
,
J.
,
2016
, “
Hull Shape Optimization for Autonomous Underwater Vehicles Using CFD
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
599
607
.
7.
Saghafi
,
M.
, and
Lavimi
,
R.
,
2020
, “
Optimal Design of Nose and Tail of an Autonomous Underwater Vehicle Hull to Reduce Drag Force Using Numerical Simulation
,”
Proc. Inst. Mech. Eng. Part M: J. Eng. Maritime Environ.
,
234
(
1
), pp.
76
88
.
8.
Hait
,
M. W.
,
2021
, “
A Hydrodynamic Analysis and Conceptual Design Study for an External Storage Enclosure System for Unmanned Underwater Vehicles
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
9.
Alam
,
K.
,
Ray
,
T.
, and
Anavatti
,
S. G.
,
2015
, “
Design Optimization of an Unmanned Underwater Vehicle Using Low- and High-Fidelity Models
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
47
(
11
), pp.
2794
2808
.
10.
Chen
,
X.
,
Wang
,
P.
,
Zhang
,
D.
, and
Dong
,
H.
,
2018
, “
Gradient-Based Multidisciplinary Design Optimization of an Autonomous Underwater Vehicle
,”
Appl. Ocean Res.
,
80
, pp.
101
111
.
11.
Luo
,
W.
,
Guo
,
X.
,
Dai
,
J.
, and
Rao
,
T.
,
2021
, “
Hull Optimization of an Underwater Vehicle Based on Dynamic Surrogate Model
,”
Ocean Eng.
,
230
(
1
), p.
109050
.
12.
De Barros
,
E.
,
Pascoal
,
A.
, and
De Sa
,
E.
,
2008
, “
Investigation of a Method for Predicting AUV Derivatives
,”
Ocean Eng.
,
35
(
16
), pp.
1627
1636
.
13.
Mitra
,
A.
,
Panda
,
J. P.
, and
Warrior
,
H. V.
,
2020
, “
Experimental and Numerical Investigation of the Hydrodynamic Characteristics of Autonomous Underwater Vehicles Over Sea-Beds With Complex Topography
,”
Ocean Eng.
,
198
, p.
106978
.
14.
Anderson
,
J. D.
, and
Wendt
,
J.
,
1995
,
Computational Fluid Dynamics
, Vol.
206
,
Springer
,
New York
.
15.
Shariati
,
S. K.
, and
Mousavizadegan
,
S. H.
,
2017
, “
The Effect of Appendages on the Hydrodynamic Characteristics of an Underwater Vehicle Near the Free Surface
,”
Appl. Ocean Res.
,
67
, pp.
31
43
.
16.
Temam
,
R.
,
2001
,
Navier–Stokes Equations: Theory and Numerical Analysis
, Vol.
343
,
American Mathematical Society
,
Providence, RI
.
17.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
18.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
London
.
19.
Emmert-Streib
,
F.
,
Yang
,
Z.
,
Feng
,
H.
,
Tripathi
,
S.
, and
Dehmer
,
M.
,
2020
, “
An Introductory Review of Deep Learning for Prediction Models With Big Data
,”
Front. Artif. Intell.
,
3
, p.
4
.
20.
Chen
,
Q.
,
Xie
,
Y.
,
Ao
,
Y.
,
Li
,
T.
,
Chen
,
G.
,
Ren
,
S.
,
Wang
,
C.
, and
Li
,
S.
,
2021
, “
A Deep Neural Network Inverse Solution to Recover Pre-crash Impact Data of Car Collisions
,”
Transp. Res. Part C: Emerg. Technol.
,
126
, p.
103009
.
21.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
22.
Xie
,
Y.
,
Li
,
S.
,
Wu
,
C.
,
Lyu
,
D.
,
Wang
,
C.
, and
Zeng
,
D.
,
2022
, “
A Generalized Bayesian Regularization Network Approach on Characterization of Geometric Defects in Lattice Structures for Topology Optimization in Preliminary Design of 3d Printing
,”
Comput. Mech.
,
69
(
5
), pp.
1191
1212
.
23.
Ao
,
Y.
,
Li
,
Y.
,
Gong
,
J.
, and
Li
,
S.
,
2021
, “
An Artificial Intelligence-Aided Design (AIAD) of Ship Hull Structures
,”
J. Ocean Eng. Sci.
,
8
(
1
), pp.
15
32
.
24.
Ao
,
Y.
,
Li
,
Y.
,
Gong
,
J.
, and
Li
,
S.
,
2022
, “
Artificial Intelligence Design for Ship Structures: A Variant Multiple-Input Neural Network Based Ship Resistance Prediction
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091707
.
25.
Allen
,
B.
,
Stokey
,
R.
,
Austin
,
T.
,
Forrester
,
N.
,
Goldsborough
,
R.
,
Purcell
,
M.
, and
von Alt
,
C.
,
1997
, “
Remus: A Small, Low Cost AUV; System Description, Field Trials and Performance Results
,”
Oceans’ 97. MTS/IEEE Conference Proceedings
,
Halifax, Nova Scotia, Canada
,
Oct. 6–9
, Vol. 2, IEEE, pp.
994
1000
.
26.
De Barros
,
E. A.
,
Freire
,
L. O.
, and
Dantas
,
J. L. D.
,
2010
, “
Development of the Pirajuba AUV
,”
IFAC Proc. Vol.
,
43
(
20
), pp.
102
107
.
27.
Alvarez
,
A.
,
Caffaz
,
A.
,
Caiti
,
A.
,
Casalino
,
G.
,
Gualdesi
,
L.
,
Turetta
,
A.
, and
Viviani
,
R.
,
2009
, “
Folaga: A Low-Cost Autonomous Underwater Vehicle Combining Glider and AUV Capabilities
,”
Ocean Eng.
,
36
(
1
), pp.
24
38
.
28.
Sarkar
,
T.
,
Sayer
,
P. G.
, and
Fraser
,
S. M.
,
1997
, “
A Study of Autonomous Underwater Vehicle Hull Forms Using Computational Fluid Dynamics
,”
Int. J. Numer. Methods Fluids
,
25
(
11
), pp.
1301
1313
.
29.
Siemens Digital Industries Software
,
2021
,
Simcenter STAR-CCM+ User Guide, Version 2021.1
.
30.
Galdi
,
G.
,
2011
,
An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
31.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “
Turbulence Modeling Validation, Testing, and Development
,” Technical Report.
32.
Salim
,
S. M.
, and
Cheah
,
S.
,
2009
, “
Wall Y+ Strategy for Dealing With Wall-Bounded Turbulent Flows
,”
Proceedings of the International Multiconference of Engineers and Computer Scientists
,
Hong Kong
,
Oct. 20–22
, Vol. 2, pp.
2165
2170
.
33.
Luo
,
W.
,
Jiang
,
D.
,
Wu
,
T.
,
Liu
,
M.
, and
Li
,
Y.
,
2022
, “
Numerical Simulation of the Hydrodynamic Characteristics of Unmanned Underwater Vehicles Near Ice Surface
,”
Ocean Eng.
,
253
, p.
111304
.
34.
Christopher Frey
,
H.
, and
Patil
,
S. R.
,
2002
, “
Identification and Review of Sensitivity Analysis Methods
,”
Risk Anal.
,
22
(
3
), pp.
553
578
.
35.
Van Der Maaten
,
L.
,
Postma
,
E.
, and
Van den Herik
,
J.
,
2009
, “
Dimensionality Reduction: A Comparative
,”
J. Mach. Learn. Res.
,
10
(
66–71
), p.
13
.
36.
Patro
,
S.
, and
Kumar Sahu
,
K.
,
2015
, “
Normalization: A Preprocessing Stage
,” Preprint arXiv:1503.06462.
37.
Shorten
,
C.
, and
Khoshgoftaar
,
T. M.
,
2019
, “
A Survey on Image Data Augmentation for Deep Learning
,”
J. Big Data
,
6
(
1
), pp.
1
48
.
38.
Chollet
,
F.
,
2015
, “
Keras Documentation
,”
keras. io.
39.
Abadi
,
M.
,
Barham
,
P.
,
Chen
,
J.
,
Chen
,
Z.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Irving
,
G.
, and
Isard
,
M.
,
2016
, “
Tensorflow: A System for Large-scale Machine Learning
,”
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)
,
Savannah, GA
,
Nov. 2–4
, pp.
265
283
.
40.
Erickson
,
N.
,
Mueller
,
J.
,
Shirkov
,
A.
,
Zhang
,
H.
,
Larroy
,
P.
,
Li
,
M.
, and
Smola
,
A.
,
2020
, “
Autogluon-Tabular: Robust and Accurate Automl for Structured Data
,” preprint arXiv:2003.06505.
41.
Jin
,
H.
,
Song
,
Q.
, and
Hu
,
X.
,
2019
, “
Auto-keras: An Efficient Neural Architecture Search System
,”
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
, pp.
1946
1956
.
42.
Myung
,
I. J.
,
2003
, “
Tutorial on Maximum Likelihood Estimation
,”
J. Math. Psychol.
,
47
(
1
), pp.
90
100
.
43.
Schulz
,
E.
,
Speekenbrink
,
M.
, and
Krause
,
A.
,
2018
, “
A Tutorial on Gaussian Process Regression: Modelling, Exploring, and Exploiting Functions
,”
J. Math. Psychol.
,
85
, pp.
1
16
.
44.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” Preprint arXiv:1412.6980.
45.
Srivastava
,
N.
,
Hinton
,
G.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2014
, “
Dropout: A Simple Way to Prevent Neural Networks From Overfitting
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
1929
1958
.
46.
Kohavi
,
R.
,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,”
Proceedings of the 14th International Joint Conference on Artificial Intelligence
,
Montreal, Canada
,
Aug. 20–25
, pp.
1137
1145
.
47.
Cawley
,
G. C.
, and
Talbot
,
N. L. C.
,
2010
, “
On Over-Fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation
,”
J. Mach. Learn. Res.
,
11
, pp.
2079
2107
.
48.
Refaeilzadeh
,
P.
,
Tang
,
L.
, and
Liu
,
H.
,
2009
, “
Cross-Validation
,”
Encyclopedia Database Syst.
,
5
, pp.
532
538
.
49.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN’95-International Conference on Neural Networks
,
Perth, WA, Australia
,
Nov. 27–Dec. 1
, IEEE, pp.
1942
1948
.
50.
Yang
,
X.
,
2020
,
Nature-Inspired Optimization Algorithms
,
Academic Press
,
Cambridge
.
51.
Du
,
X.
,
Chen
,
D.
, and
Yan
,
Z.
,
2020
, “
Research on Control Method of Unmanned Underwater Vehicle Dynamic Positioning Based on Energy Consumption Optimization
,”
Int. J. Adv. Robot. Syst.
,
17
(
5
), p.
1729881420933835
.
You do not currently have access to this content.