Abstract

Quantum computing as the emerging paradigm for scientific computing has attracted significant research attention in the past decade. Quantum algorithms to solve the problems of linear systems, eigenvalue, optimization, machine learning, and others have been developed. The main advantage of utilizing quantum computer to solve optimization problems is that quantum superposition allows for massive parallel searching of solutions. This article provides an overview of fundamental quantum algorithms that can be utilized in solving optimization problems, including Grover search, quantum phase estimation, quantum annealing, quantum approximate optimization algorithm, variational quantum eigensolver, and quantum walk. A review of recent applications of quantum optimization methods for engineering design, including materials design and topology optimization, is also given. The challenges to develop scalable and reliable quantum algorithms for engineering optimization are discussed.

References

1.
Cirac
,
J. I.
, and
Zoller
,
P.
,
1995
, “
Quantum Computations With Cold Trapped Ions
,”
Phys. Rev. Lett.
,
74
(
20
), p.
4091
.
2.
Saffman
,
M.
,
Walker
,
T. G.
, and
Mølmer
,
K.
,
2010
, “
Quantum Information With Rydberg Atoms
,”
Rev. Mod. Phys.
,
82
(
3
), p.
2313
.
3.
O’brien
,
J. L.
,
2007
, “
Optical Quantum Computing
,”
Science
,
318
(
5856
), pp.
1567
1570
.
4.
Wendin
,
G.
,
2017
, “
Quantum Information Processing With Superconducting Circuits: A Review
,”
Rep. Prog. Phys.
,
80
(
10
), p.
106001
.
5.
Cory
,
D. G.
,
Fahmy
,
A. F.
, and
Havel
,
T. F.
,
1997
, “
Ensemble Quantum Computing by NMR Spectroscopy
,”
Proc. Natl. Acad. Sci. USA
,
94
(
5
), pp.
1634
1639
.
6.
Steffen
,
M.
,
van Dam
,
W.
,
Hogg
,
T.
,
Breyta
,
G.
, and
Chuang
,
I.
,
2003
, “
Experimental Implementation of an Adiabatic Quantum Optimization Algorithm
,”
Phys. Rev. Lett.
,
90
, p.
067903
.
7.
Shor
,
P. W.
,
1994
, “
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
,”
Proceedings of 35th IEEE Annual Symposium on Foundations of Computer Science
,
Santa Fe, NM
,
Nov. 20–22
, IEEE, pp.
124
134
.
8.
Preskill
,
J.
,
2018
, “
Quantum Computing in the NISQ Era and Beyond
,”
Quantum
,
2
, p.
79
.
9.
Grover
,
L. K.
,
1996
, “
A Fast Quantum Mechanical Algorithm for Database Search
,”
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing
,
Philadelphia, PA
,
May 22–24
, ACM, pp.
212
219
.
10.
Dürr
,
C.
, and
Hoyer
,
P.
,
1996
, “
A Quantum Algorithm for Finding the Minimum
,” arXiv:quant-ph/9607014.
11.
Baritompa
,
W. P.
,
Bulger
,
D. W.
, and
Wood
,
G. R.
,
2005
, “
Grover’s Quantum Algorithm Applied to Global Optimization
,”
SIAM J. Optim.
,
15
(
4
), pp.
1170
1184
.
12.
Wang
,
Y.
,
2014
, “
Global Optimization With Quantum Walk Enhanced Grover Search
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, Vol. 46322, American Society of Mechanical Engineers, p. V02BT03A027.
13.
Wang
,
Y.
,
2017
, “
A Quantum Walk Enhanced Grover Search Algorithm for Global Optimization
,” arXiv:1711.07825.
14.
Harrow
,
A. W.
,
Hassidim
,
A.
, and
Lloyd
,
S.
,
2009
, “
Quantum Algorithm for Linear Systems of Equations
,”
Phys. Rev. Lett.
,
103
(
15
), p.
150502
.
15.
Apolloni
,
B.
,
Carvalho
,
M. C.
, and
De Falco
,
D.
,
1989
, “
Quantum Stochastic Optimization
,”
Stochast. Process Appl.
,
33
(
2
), pp.
233
244
.
16.
Apolloni
,
B.
,
Cesa-Bianchi
,
N.
, and
De Falco
,
D.
,
1990
, “A Numerical Implementation of "Quantum Annealing",”
Stochastic Processes, Physics and Geometry
,
S.
Albeverio
,
G.
Casati
,
D.
Merlini
,
R.
Moresi
, and
G.
Cattaneo
, eds.,
World Scientific
,
Singapore
, pp.
97
111
.
17.
Kadowaki
,
T.
, and
Nishimori
,
H.
,
1998
, “
Quantum Annealing in the Transverse Ising Model
,”
Phys. Rev. E
,
58
(
5
), p.
5355
.
18.
Farhi
,
E.
,
Goldstone
,
J.
,
Gutmann
,
S.
, and
Sipser
,
M.
,
2000
, “
Quantum Computation by Adiabatic Evolution
,” arXiv:quant-ph/0001106.
19.
Peruzzo
,
A.
,
McClean
,
J.
,
Shadbolt
,
P.
,
Yung
,
M.-H.
,
Zhou
,
X.-Q.
,
Love
,
P. J.
,
Aspuru-Guzik
,
A.
, and
O’Brien
,
J. L.
,
2014
, “
A Variational Eigenvalue Solver on a Photonic Quantum Processor
,”
Nat. Commun.
,
5
(
1
), p.
4213
.
20.
Farhi
,
E.
,
Goldstone
,
J.
, and
Gutmann
,
S.
,
2014
, “
A Quantum Approximate Optimization Algorithm
,” arXiv:1411.4028.
21.
Zhou
,
L.
,
Wang
,
S.-T.
,
Choi
,
S.
,
Pichler
,
H.
, and
Lukin
,
M. D.
,
2020
, “
Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices
,”
Phys. Rev. X
,
10
(
2
), p.
021067
.
22.
Meyer
,
D.
,
1996
, “
From Quantum Cellular Automata to Quantum Lattice Gases
,”
J. Statist. Phys.
,
85
(
5–6
), pp.
551
574
.
23.
Ambainis
,
A.
,
Bach
,
E.
,
Nayak
,
A.
,
Vishwanath
,
A.
, and
Watrous
,
J.
,
2001
, “
One-Dimensional Quantum Walks
,”
Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing
,
Hersonissos, Greece
,
July 6
, ACM, pp.
37
49
.
24.
Wang
,
Y.
,
2013
, “
Simulating Stochastic Diffusions by Quantum Walks
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
, Vol. 55898, American Society of Mechanical Engineers, p. V03BT03A053.
25.
Farhi
,
E.
, and
Gutmann
,
S.
,
1998
, “
Quantum Computation and Decision Trees
,”
Phys. Rev. A
,
58
, pp.
915
928
.
26.
Childs
,
A. M.
,
2010
, “
On the Relationship Between Continuous- and Discrete-Time Quantum Walk
,”
Commun. Math. Phys.
,
294
, pp.
581
603
.
27.
Childs
,
A. M.
,
2009
, “
Universal Computation by Quantum Walk
,”
Phys. Rev. Lett.
,
102
(
18
), p.
180501
.
28.
Wang
,
Y.
,
2021
, “
A Quantum Approximate Bayesian Optimization Algorithm for Continuous Problems
,”
Proceedings of IISE Annual Conference & Expo
,
Virtual
,
May 22–25
, pp.
235
240
.
29.
Marsh
,
S.
, and
Wang
,
J.
,
2019
, “
A Quantum Walk-Assisted Approximate Algorithm for Bounded NP Optimisation Problems
,”
Quantum Inf. Process.
,
18
, pp.
1
18
.
30.
Wang
,
Y.
,
2016
, “
Accelerating Stochastic Dynamics Simulation With Continuous-Time Quantum Walks
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, Vol. 50183, American Society of Mechanical Engineers, p. V006T09A053
31.
Bendsoe
,
M. P.
,
Guedes
,
J. M.
,
Haber
,
R. B.
,
Pedersen
,
P.
, and
Taylor
,
J. E.
,
2008
, “
An Analytical Model to Predict Optimal Material Properties in the Context of Optimal Structural Design
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
930
937
.
32.
Wang
,
Z.
,
Hadfield
,
S.
,
Jiang
,
Z.
, and
Rieffel
,
E. G.
,
2018
, “
Quantum Approximate Optimization Algorithm for Maxcut: A Fermionic View
,”
Phys. Rev. A
,
97
(
2
), p.
022304
.
33.
Bärtschi
,
A.
, and
Eidenbenz
,
S.
,
2020
, “
Grover Mixers for QAOA: Shifting Complexity from Mixer Design to State Preparation
,”
Proceedings of IEEE International Conference on Quantum Computing and Engineering
,
Denver, CO
,
Oct. 12–16
.
34.
Zubov
,
D.
,
Volponi
,
F.
, and
Khosravy
,
M.
,
2015
, “
D-Wave Quantum Computing Ising Model: A Case Study for the Forecasting of Heat Waves
,”
Proceedings of IEEE International Conference on Control, Automation and Information Sciences
,
Changshu, China
,
Oct. 29–31
, IEEE, pp.
149
152
.
35.
Silva
,
C.
,
Aguiar
,
A.
,
Lima
,
P. M.
, and
Dutra
,
I.
,
2020
, “
Mapping Graph Coloring to Quantum Annealing
,”
Quantum Mach. Intell.
,
2
, pp.
1
19
.
36.
Kasi
,
S.
,
Kaewell
,
J.
, and
Jamieson
,
K.
,
2022
, “
The Design and Implementation of a Hybrid Classical-Quantum Annealing Polar Decoder
,”
Proceedings of IEEE Global Communications Conference
,
Rio de Janeiro, Brazil
,
Dec. 4–8
, IEEE, pp.
5819
5825
.
37.
Raisuddin
,
O. M.
, and
De
,
S.
,
2022
, “
FEQA: Finite Element Computations on Quantum Annealers
,”
Comput. Methods Appl. Mech. Eng.
,
395
, p.
115014
.
38.
Choi
,
J.
,
Oh
,
S.
, and
Kim
,
J.
,
2020
, “
Energy-Efficient Cluster Head Selection Via Quantum Approximate Optimization
,”
Electronics
,
9
(
10
), p.
1669
.
39.
Gaitan
,
F.
, and
Nori
,
F.
,
2009
, “
Density Functional Theory and Quantum Computation
,”
Phys. Rev. B
,
79
(
20
), p.
205117
.
40.
Babbush
,
R.
,
Love
,
P. J.
, and
Aspuru-Guzik
,
A.
,
2014
, “
Adiabatic Quantum Simulation of Quantum Chemistry
,”
Sci. Rep.
,
4
(
1
), p.
6603
.
41.
McClean
,
J. R.
,
Romero
,
J.
,
Babbush
,
R.
, and
Aspuru-Guzik
,
A.
,
2016
, “
The Theory of Variational Hybrid Quantum-Classical Algorithms
,”
New J. Phys.
,
18
(
2
), p.
023023
.
42.
Whitfield
,
J. D.
,
Biamonte
,
J.
, and
Aspuru-Guzik
,
A.
,
2011
, “
Simulation of Electronic Structure Hamiltonians Using Quantum Computers
,”
Mol. Phys.
,
109
(
5
), pp.
735
750
.
43.
Kremenetski
,
V.
,
Hogg
,
T.
,
Hadfield
,
S.
,
Cotton
,
S. J.
, and
Tubman
,
N. M.
,
2021
, “
Quantum Alternating Operator Ansatz (QAOA) Phase Diagrams and Applications for Quantum Chemistry
,” arXiv:2108.13056.
44.
O’Malley
,
P. J. J.
,
Romero
,
J.
,
McClean
,
J. R.
,
Barens
,
R.
,
Kelly
,
J.
,
Roushan
,
P.
,
Tranter
,
A.
, et al.,
2016
, “
Scalable Quantum Simulation of Molecular Energies
,”
Phys. Rev. X
,
6
(
3
), p.
031007
.
45.
Shen
,
Y.
,
Zhang
,
X.
,
Zhang
,
S.
,
Zhang
,
J.-N.
,
Yung
,
M.-H.
, and
Kim
,
K.
,
2017
, “
Quantum Implementation of the Unitary Coupled Cluster for Simulating Molecular Electronic Structure
,”
Phys. Rev. A
,
95
(
2
), p.
020501
.
46.
Zhang
,
Y.
,
Cincio
,
L.
,
Negre
,
C. F. A.
,
Czarnik
,
P.
,
Coles
,
P. J.
,
Anisimov
,
P. M.
,
Mniszewski
,
S. M.
,
Tretiak
,
S.
, and
Dub
,
P. A.
,
2022
, “
Variational Quantum Eigensolver With Reduced Circuit Complexity
,”
Quantum Inf.
,
8
(
1
), p.
96
.
47.
Mizuta
,
K.
,
Fujii
,
M.
,
Fujii
,
S.
,
Ichikawa
,
K.
,
Imamura
,
Y.
,
Okuno
,
Y.
, and
Nakagawa
,
Y. O.
,
2021
, “
Deep Variational Quantum Eigensolver for Excited States and Its Application to Quantum Chemistry Calculation of Periodic Materials
,”
Phys. Rev. Res.
,
3
(
4
), p.
043121
.
48.
Bravyi
,
S.
,
Gambetta
,
J. M.
,
Mezzacapo
,
A.
, and
Temme
,
K.
,
2017
, “
Tapering Off Qubits to Simulate Fermionic Hamiltonians
,” arXiv:1701.08213.
49.
Setia
,
K.
,
Chen
,
R.
,
Rice
,
J. E.
,
Mezzacapo
,
A.
,
Pistoia
,
M.
, and
Whitfield
,
J. D.
,
2020
, “
Reducing Qubit Requirements for Quantum Simulations Using Molecular Point Group Symmetries
,”
J. Chem. Theory Comput.
,
16
(
10
), pp.
6091
6097
.
50.
Shee
,
Y.
,
Tsai
,
P.-K.
,
Hong
,
C.-L.
,
Cheng
,
H.-C.
, and
Goan
,
H.-S.
,
2022
, “
Qubit-Efficient Encoding Scheme for Quantum Simulations of Electronic Structure
,”
Phys. Rev. Res.
,
4
(
2
), p.
023154
.
51.
Ryabinkin
,
I. G.
,
Yen
,
T.-C.
,
Genin
,
S. N.
, and
Izmaylov
,
A. F.
,
2018
, “
Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer
,”
J. Chem. Theory Comput.
,
14
(
12
), pp.
6317
6326
.
52.
Kawashima
,
Y.
,
Lloyd
,
E.
,
Coons
,
M. P.
,
Nam
,
Y.
,
Matsuura
,
S.
,
Garza
,
A. J.
,
Johri
,
S.
, et al.,
2021
, “
Optimizing Electronic Structure Simulations on a Trapped-Ion Quantum Computer Using Problem Decomposition
,”
Commun. Phys.
,
4
(
1
), pp.
1
9
.
53.
Delgado
,
A.
,
Casares
,
P. A. M.
,
Zini
,
M. S.
,
Campos
,
R.
,
Cruz-Hernández
,
N.
,
Voigt
,
A.-C.
,
Lowe
,
A.
,
Jahangiri
,
S.
, and
Arrazola
,
J. M.
,
2022
, “
How to Simulate Key Properties of Lithium-Ion Batteries With a Fault-Tolerant Quantum Computer
,” arXiv:2204.11890.
54.
Ma
,
H.
,
Govoni
,
M.
, and
Galli
,
G.
,
2020
, “
Quantum Simulations of Materials on Near-Term Quantum Computers
,”
Comput. Mater.
,
6
(
1
), pp.
1
8
.
55.
Kitai
,
K.
,
Guo
,
J.
,
Ju
,
S.
,
Tanaka
,
S.
,
Tsuda
,
K.
,
Shiomi
,
J.
, and
Tamura
,
R.
,
2020
, “
Designing Metamaterials With Quantum Annealing and Factorization Machines
,”
Phys. Rev. Res.
,
2
(
1
), p.
013319
.
56.
Perdomo-Ortiz
,
A.
,
Dickson
,
N.
,
Drew-Brook
,
M.
,
Rose
,
G.
, and
Aspuru-Guzik
,
A.
,
2012
, “
Finding Low-Energy Conformations of Lattice Protein Models by Quantum Annealing
,”
Sci. Rep.
,
2
(
1
), pp.
1
7
.
57.
Robert
,
A.
,
Barkoutsos
,
P. K.
,
Woerner
,
S.
, and
Tavernelli
,
I.
,
2021
, “
Resource-Efficient Quantum Algorithm for Protein Folding
,”
npj Quantum Information
,
7
, p.
38
.
58.
Fingerhuth
,
M.
, and
Babej
,
T.
,
2018
, “
A Quantum Alternating Operator Ansatz With Hard and Soft Constraints for Lattice Protein Folding
,” arXiv:1810.13411.
59.
Boulebnane
,
S.
,
Lucas
,
X.
,
Meyder
,
A.
,
Adaszewski
,
S.
, and
Montanaro
,
A.
,
2022
, “
Peptide Conformational Sampling Using the Quantum Approximate Optimization Algorithm
,” arXiv:2204.01821.
60.
Micheletti
,
C.
,
Hauke
,
P.
, and
Faccioli
,
P.
,
2021
, “
Polymer Physics by Quantum Computing
,”
Phys. Rev. Lett.
,
127
(
8
), p.
080501
.
61.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer-Verlag
,
Berlin
.
62.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
63.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
64.
Suresh
,
K.
,
2013
, “
Efficient Generation of Large-Scale Pareto-Optimal Topologies
,”
Struct. Multidiscipl. Optim.
,
47
(
1
), pp.
49
61
.
65.
Guo
,
L.-X.
, and
Yin
,
J.-Y.
,
2019
, “
Finite Element Analysis and Design of an Interspinous Device Using Topology Optimization
,”
Med. Biol. Eng. Comput.
,
57
(
1
), pp.
89
98
.
66.
Christiansen
,
R. E.
, and
Sigmund
,
O.
,
2021
, “
Inverse Design in Photonics by Topology Optimization: Tutorial
,”
JOSA B
,
38
(
2
), pp.
496
509
.
67.
Chandrasekhar
,
A.
, and
Suresh
,
K.
,
2021
, “
TOuNN: Topology Optimization Using Neural Networks
,”
Struct. Multidiscipl. Optim.
,
63
, pp.
1135
1149
.
68.
Mukherjee
,
S.
,
Lu
,
D.
,
Raghavan
,
B.
,
Breitkopf
,
P.
,
Dutta
,
S.
,
Xiao
,
M.
, and
Zhang
,
W.
,
2021
, “
Accelerating Large-Scale Topology Optimization: State-of-the-Art and Challenges
,”
Arch. Comput. Methods Eng.
,
28
(
7
), pp.
4549
4571
.
69.
Lu
,
Y.
, and
Wang
,
Y.
,
2022
, “
Structural Optimization of Metamaterials Based on Periodic Surface Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
395
, p.
115057
.
70.
Clader
,
B. D.
,
Jacobs
,
B. C.
, and
Sprouse
,
C. R.
,
2013
, “
Preconditioned Quantum Linear System Algorithm
,”
Phys. Rev. Lett.
,
110
(
25
), p.
250504
.
71.
Childs
,
A. M.
,
Kothari
,
R.
, and
Somma
,
R. D.
,
2017
, “
Quantum Algorithm for Systems of Linear Equations With Exponentially Improved Dependence on Precision
,”
SIAM J. Comput.
,
46
(
6
), pp.
1920
1950
.
72.
Srinivasan
,
K.
,
Behera
,
B. K.
, and
Panigrahi
,
P. K.
,
2017
, “
Solving Linear Systems of Equations by Gaussian Elimination Method Using Grover’s Search Algorithm: An IBM Quantum Experience
,” arXiv:1801.00778.
73.
Pollachini
,
G. G.
,
Salazar
,
J. P.
,
Góes
,
C. B.
,
Maciel
,
T. O.
, and
Duzzioni
,
E. I.
,
2021
, “
Hybrid Classical-Quantum Approach to Solve the Heat Equation Using Quantum Annealers
,”
Phys. Rev. A
,
104
(
3
), p.
032426
.
74.
Liu
,
H.-L.
,
Wu
,
Y.-S.
,
Wan
,
L.-C.
,
Pan
,
S.-J.
,
Qin
,
S.-J.
,
Gao
,
F.
, and
Wen
,
Q.-Y.
,
2021
, “
Variational Quantum Algorithm for the Poisson Equation
,”
Phys. Rev. A
,
104
(
2
), p.
022418
.
75.
Liu
,
J.-P.
,
Kolden
,
H. Ø.
,
Krovi
,
H. K.
,
Loureiro
,
N. F.
,
Trivisa
,
K.
, and
Childs
,
A. M.
,
2021
, “
Efficient Quantum Algorithm for Dissipative Nonlinear Differential Equations
,”
Proc. Natl. Acad. Sci. USA
,
118
(
35
), p.
e2026805118
.
76.
Oz
,
F.
,
Vuppala
,
R. K.
,
Kara
,
K.
, and
Gaitan
,
F.
,
2022
, “
Solving Burgers’ Equation With Quantum Computing
,”
Quantum Inf. Process.
,
21
, pp.
1
13
.
77.
Sato
,
Y.
,
Kondo
,
R.
,
Koide
,
S.
, and
Kajita
,
S.
,
2022
, “
Quantum Topology Optimization of Ground Structures Using Noisy Intermediate-Scale Quantum Devices
,” arXiv:2207.09181.
78.
Ye
,
Z.
,
Qian
,
X.
, and
Pan
,
W.
,
2023
, “
Quantum Topology Optimization Via Quantum Annealing
,”
IEEE Trans. Quantum Eng.
,
4
, p.
3100515
.
79.
Muñoz
,
E.
, and
Stolpe
,
M.
,
2011
, “
Generalized Benders’ Decomposition for Topology Optimization Problems
,”
J. Global Optim.
,
51
, pp.
149
183
.
80.
Shor
,
P. W.
,
1995
, “
Scheme for Reducing Decoherence in Quantum Computer Memory
,”
Phys. Rev. A
,
52
(
4
), p.
R2493
.
81.
Bacon
,
D.
,
2006
, “
Operator Quantum Error-Correcting Subsystems for Self-Correcting Quantum Memories
,”
Phys. Rev. A
,
73
(
1
), p.
012340
.
82.
Kitaev
,
A.
,
2003
, “
Fault-Tolerant Quantum Computation by Anyons
,”
Ann. Phys.
,
303
(
1
), pp.
2
30
.
83.
Dennis
,
E.
,
Kitaev
,
A.
,
Landahl
,
A.
, and
Preskill
,
J.
,
2002
, “
Topological Quantum Memory
,”
J. Math. Phys.
,
43
(
9
), pp.
4452
4505
.
84.
Albert
,
V. V.
,
2022
, “
Bosonic Coding: Introduction and Use Cases
,” arXiv:2211.05714.
85.
Farhi
,
E.
,
Goldstone
,
J.
,
Gutmann
,
S.
, and
Nagaj
,
D.
,
2008
, “
How to Make the Quantum Adiabatic Algorithm Fail
,”
Int. J. Quantum Inf.
,
6
(
03
), pp.
503
516
.
86.
Altshuler
,
B.
,
Krovi
,
H.
, and
Roland
,
J.
,
2010
, “
Anderson Localization Makes Adiabatic Quantum Optimization Fail
,”
Proc. Natl. Acad. Sci. USA
,
107
(
28
), pp.
12446
12450
.
87.
Mishra
,
A.
,
Albash
,
T.
, and
Lidar
,
D. A.
,
2018
, “
Finite Temperature Quantum Annealing Solving Exponentially Small Gap Problem With Non-Monotonic Success Probability
,”
Nat. Commun.
,
9
(
1
), p.
2917
.
You do not currently have access to this content.