Abstract

The digitization of manufacturing has transformed the product realization process across many industries, from aerospace and automotive to medicine and healthcare. While this progress has accelerated product development cycles and enabled designers to create products with previously unachievable complexity and precision, it has also opened the door to a broad array of unique security concerns, from theft of intellectual property to supply chain attacks and counterfeiting. To address these concerns, information embedding (e.g., watermarks and fingerprints) has emerged as a promising solution that enhances product security and traceability. Information embedding techniques involve storing unique and secure information within parts, making these parts easier to track and to verify for authenticity. However, a successful information embedding scheme requires information to be transmitted in physical parts both securely and in a way that is accessible to end sers. Ensuring these qualities introduces unique computational and engineering challenges. For instance, these qualities require the designer of the embedding scheme to have an accurate model of the cyber-physical processes needed to embed information during manufacturing and read it later in the product life cycle, as well as models of the phenomena that may degrade that information through natural wear-and-tear, or through adversarial attacks. This article discusses challenges and research opportunities for the engineering design and manufacturing community in developing methods for efficient information embedding in manufactured products.

References

1.
Yampolskiy
,
M.
,
King
,
W. E.
,
Gatlin
,
J.
,
Belikovetsky
,
S.
,
Brown
,
A.
,
Skjellum
,
A.
, and
Elovici
,
Y.
,
2018
, “
Security of Additive Manufacturing: Attack Taxonomy and Survey
,”
Addit. Manuf.
,
21
, pp.
431
457
.
2.
Pan
,
Y.
,
White
,
J.
,
Schmidt
,
D.
,
Elhabashy
,
A.
,
Sturm
,
L.
,
Camelio
,
J.
, and
Williams
,
C.
,
2017
, “
Taxonomies for Reasoning About Cyber-Physical Attacks in IOT-Based Manufacturing Systems
,”
Int. J. Interactive Multimedia Artificial Intell.
,
4
(
3
), pp.
45
54
.
3.
Wells
,
L. J.
,
Camelio
,
J. A.
,
Williams
,
C. B.
, and
White
,
J.
,
2014
, “
Cyber-Physical Security Challenges in Manufacturing Systems
,”
Manuf. Lett.
,
2
(
2
), pp.
74
77
.
4.
IBM Seurity
,
2022
, X-Force Threat Intelligence Index 2022, IBM Security Report, https://www.ibm.com/downloads/cas/ADLMYLAZ
5.
Chaduvula
,
S. C.
,
Dachowicz
,
A.
,
Atallah
,
M. J.
, and
Panchal
,
J. H.
,
2018
, “
Security in Cyber-Enabled Design and Manufacturing: A Survey
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
040802
.
6.
Wang
,
S.
,
Bhandari
,
S.
,
Chaduvula
,
S. C.
,
Atallah
,
M. J.
,
Panchal
,
J. H.
, and
Ramani
,
K.
,
2017
, “
Secure Collaboration in Engineering Systems Design
,”
ASME J. Computing Inform. Sci. Eng.
,
17
(
4
), p.
041010
.
7.
Maes
,
R.
,
2013
,
Physically Unclonable Functions: Constructions, Properties and Applications
,
Springer
,
Berlin/Heidelberg
.
8.
Hong
,
Y.
,
Vaidya
,
J.
, and
Wang
,
S.
,
2013
, “
A Survey of Privacy-Aware Supply Chain Collaboration: From Theory to Applications
,”
J. Inform. Syst.
,
28
(
1
), pp.
243
268
.
9.
Maia
,
H. T.
,
Li
,
D.
,
Yang
,
Y.
, and
Zheng
,
C.
,
2019
, “
LayerCode: Optical Barcodes for 3D Printed Shapes
,”
ACM Trans. Graphics (TOG)
,
38
(
4
), pp.
1
14
.
10.
Kikuchi
,
R.
,
Yoshikawa
,
S.
,
Jayaraman
,
P. K.
,
Zheng
,
J.
, and
Maekawa
,
T.
,
2018
, “
Embedding Qr Codes Onto B-spline Surfaces for 3d Printing
,”
Computer-Aided Design
,
102
, pp.
215
223
.
11.
Delmotte
,
A.
,
Tanaka
,
K.
,
Kubo
,
H.
,
Funatomi
,
T.
, and
Mukaigawa
,
Y.
,
2019
, “
Blind Watermarking for 3D Printed Objects by Locally Modifying Layer Thickness
,”
IEEE Trans. Multimedia
,
22
(
11
), pp.
2780
2791
.
12.
Kubo
,
Y.
,
Eguchi
,
K.
, and
Aoki
,
R.
,
2020
, “
3d-Printed Object Identification Method Using Inner Structure Patterns Configured by Slicer Software
,”
Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems
,
Honolulu, HI
,
Apr. 25–30
, pp.
1
7
.
13.
Li
,
D.
,
Nair
,
A. S.
,
Nayar
,
S. K.
, and
Zheng
,
C.
,
2017
, “
Aircode: Unobtrusive Physical Tags for Digital Fabrication
,”
Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology
,
Québec City, QC, Canada
,
Oct. 22–25
, pp.
449
460
.
14.
ElSayed
,
K. A.
,
Dachowicz
,
A.
, and
Panchal
,
J. H.
,
2021
, “
Information Embedding in Additive Manufacturing Through Printing Speed Control
,”
Proceedings of the 2021 Workshop on Additive Manufacturing (3D Printing) Security
,
Virtual Event, South Korea
,
Nov. 19
, pp.
31
37
.
15.
Petitcolas
,
F.
,
Anderson
,
R.
, and
Kuhn
,
M.
,
1999
, “
Information Hiding—A Survey
,”
Proc. IEEE
,
87
(
7
), pp.
1062
1078
.
16.
Katzenbeisser
,
S.
,
1999
,
Information Hiding Techniques for Steganography and Digital Watermarking
,
Computing S. Artech House
,
Norwood, MA
.
17.
Boehm
,
C.
, and
Hofer
,
M.
,
2012
,
Physical Unclonable Functions in Theory and Practice
,
Springer
,
New York
.
18.
Handschuh
,
H.
,
Schrijen
,
G.-J.
, and
Tuyls
,
P.
,
2010
, “Hardware Intrinsic SecurityFrom Physically Unclonable Functions,”
Towards Hardware-Intrinsic Security
,
A-R.
Sadeghi
, and
D.
Naccache
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
39
53
.
19.
Maes
,
R.
, and
Verbauwhede
,
I.
,
2010
, “Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions,”
Towards Hardware-Intrinsic Security: Foundations and Practice
,
A-R.
Sadeghi
,
D.
Naccache
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
3
37
.
20.
Herder
,
C.
,
Yu
,
M.-D.
,
Koushanfar
,
F.
, and
Devadas
,
S.
,
2014
, “
Physical Unclonable Functions and Applications: A Tutorial
,”
Proc. IEEE
,
102
(
8
), pp.
1126
1141
.
21.
Gao
,
Y.
,
Al-Sarawi
,
S. F.
, and
Abbott
,
D.
,
2020
, “
Physical Unclonable Functions
,”
Nature Electronics
,
3
(
2
), pp.
81
91
.
22.
Dachowicz
,
A.
,
Chaduvula
,
S. C.
,
Atallah
,
M.
, and
Panchal
,
J. H.
,
2017
, “
Microstructure-Based Counterfeit Detection in Metal Part Manufacturing
,”
JOM
,
69
(
11
), pp.
2390
2396
.
23.
Dachowicz
,
A.
,
Atallah
,
M.
, and
Panchal
,
J. H.
,
2018
, “
Optical Puf Design for Anti-Counterfeiting in Manufacturing of Metallic Goods
,”
ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2018)
,
Quebec City, Canada
,
Aug. 26–29
.
24.
Sandborn
,
M.
,
Olea
,
C.
,
White
,
J.
,
Williams
,
C.
,
Tarazaga
,
P. A.
,
Sturm
,
L.
,
Albakri
,
M.
, and
Tenney
,
C.
,
2021
, “
Towards Secure Cyber-Physical Information Association for Parts
,”
J. Manuf. Syst.
,
59
, pp.
27
41
.
25.
Dogan
,
M. D.
,
Faruqi
,
F.
,
Churchill
,
A. D.
,
Friedman
,
K.
,
Cheng
,
L.
,
Subramanian
,
S.
, and
Mueller
,
S.
,
2020
, “
G-id: Identifying 3d Prints Using Slicing Parameters
,”
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
,
Honolulu, HI
,
Apr. 25–30
, pp.
1
13
.
26.
Peng
,
H.
,
Liu
,
P.
,
Lu
,
L.
,
Sharf
,
A.
,
Liu
,
L.
,
Lischinski
,
D.
, and
Chen
,
B.
,
2020
, “
Fabricable Unobtrusive 3D-QR-Codes with Directional Light
,”
Comput. Geom. Fabr.
,
39
(
5
), pp.
15
27
.
27.
Harrison
,
C.
,
Xiao
,
R.
, and
Hudson
,
S.
,
2012
, “
Acoustic Barcodes: Passive, Durable and Inexpensive Notched Identification Tags
,”
Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology
,
Cambridge, MA
,
Oct. 7–10
, pp.
563
568
.
28.
Zhang
,
X.
,
Wang
,
Q.
,
Breckon
,
T.
, and
Ivrissimtzis
,
I.
,
2018
, Watermark Retrieval from 3D Printed Objects via Convolutional Neural Networks .
29.
Wei
,
C.
,
Sun
,
Z.
,
Huang
,
Y.
, and
Li
,
L.
,
2018
, “
Embedding Anti-Counterfeiting Features in Metallic Components Via Multiple Material Additive Manufacturing
,”
Additive Manuf.
,
24
(
Dec.
), pp.
1
12
.
30.
Zhang
,
X.
,
Wang
,
Q.
, and
Ivrissimtzis
,
I.
,
2018
, “Single Image Watermark Retrieval From 3d Printed Surfaces Via Convolutional Neural Networks,”
Computer Graphics and Visual Computing (CGVC)
,
G.K.L.
Tam
, and
F.
Vidal
, eds.,
The Eurographics Association
,
Online
.
31.
Chen
,
F.
,
Luo
,
Y.
,
Tsoutsos
,
N. G.
,
Maniatakos
,
M.
,
Shahin
,
K.
, and
Gupta
,
N.
,
2019
, “
Embedding Tracking Codes in Additive Manufactured Parts for Product Authentication
,”
Adv. Eng. Mater.
,
21
(
4
), p.
1800495
.
32.
Willis
,
K. D.
, and
Wilson
,
A. D.
,
2013
, “
Infrastructs: Fabricating Information Inside Physical Objects for Imaging in the Terahertz Region
,”
ACM Trans. Graphics (TOG)
,
32
(
4
), pp.
1
10
.
33.
Salas
,
D.
,
Ebeperi
,
D.
,
Elverud
,
M.
,
Arróyave
,
R.
,
Malak
,
R.
, and
Karaman
,
I.
,
2022
, “
Embedding Hidden Information in Additively Manufactured Metals Via Magnetic Property Grading for Traceability
,”
Addit. Manuf.
,
60
, p.
103261
.
34.
Denkena
,
B.
,
Grove
,
T.
, and
Maiss
,
O.
,
2017
, “
Surface Texturing of Rolling Elements by Hard Ball-End Milling and Burnishing
,”
Int. J. Adv. Manuf. Technol.
,
93
(
9–12
), pp.
3713
3721
.
35.
Wojciechowski
,
S.
,
Twardowski
,
P.
, and
Wieczorowski
,
M.
,
2014
, “
Surface Texture Analysis After Ball End Milling With Various Surface Inclination of Hardened Steel
,”
Metrology Measurement Syst.
,
21
(
1
), pp.
145
156
.
36.
Shannon
,
C. E.
,
1957
, “
Certain Results in Coding Theory for Noisy Channels
,”
Inform. Control
,
1
(
1
), pp.
6
25
.
37.
Dachowicz
,
A. P.
,
2020
, “Tailored Traceability and Provenance Determination in Manufacturing,” Ph.d. thesis,
Purdue University
,
West Lafayette, IN
.
38.
Wang
,
H. S.
, and
Moayeri
,
N.
,
1995
, “
Finite-State Markov Channel—A Useful Model for Radio Communication Channels
,”
IEEE Trans. Vehicular Technol.
,
44
(
1
), pp.
163
171
.
You do not currently have access to this content.