Abstract

Megacasting is a new concept in the automotive industry. A large number of sheet metal parts will be replaced with one large aluminum casting, i.e., a megacasting. This helps to reduce weight, opens up for larger design flexibility, allows for a more circular production, and takes away a large number of assembly steps in the production process. However, there are also challenges related to the use of megacastings. This position paper outlines challenges associated with the geometrical quality of the final product. It covers robust design and tolerancing in early product development phases as well as inspection preparation during pre-production and digital twin setup during full production to ensure the geometrical quality of a product containing a megacasting. Simulations of both part-level and assembly-level deviation and variation are discussed. The paper outlines a geometry assurance process for products containing megacastings in the automotive industry, and what research challenges that are the most important ones to address in this area. It is concluded that computer-aided tolerancing tools must be able to predict the dimensional effects from joining methods such as flow-drill fasteners or self-pierced riveting, to use casting simulation as input, and to handle combinations of solid and surface meshes. Furthermore, there might be a need for adjustments to the joining process based on digital twins to achieve proper quality at a reasonable price. Experiences in using megacastings in the body-in-white are lacking and a fast learning curve is required.

References

1.
Lehmhus
,
D.
,
2022
, “
Advances in Metal Casting Technology: A Review of State of the Art, Challenges and Trends—Part I: Changing Markets, Changing Products
,”
Metals
,
12
(
11
), p.
1959
.
2.
TESLA
,
2022
, “
INTEGRATED ENERGY ABSORBING CASTINGS, PCT/US2021/044780
,” https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022031991.
3.
Rakoto
,
B.
, and
Ling
,
L.
,
2022
, “
2022 Mega-Casting Trends for Automotive Manufacturers
,” White Paper, Ducker-Carlise, ed. https://www.linkedin.com/pulse/mega-casting-trends-automotive-manufacturers-2022-ducker-worldwide/
5.
Thorborg
,
J.
,
Klinkhammer
,
J.
, and
Heitzer
,
M.
,
2015
, “
Integrated Modelling of Transitions in Mechanical Conditions During Casting and Heat Treatment
,”
Proceedings of the IOP Conference Series: Materials Science and Engineering
,
Hyogo, Japan
,
June 21–26
, IOP Publishing, p.
012037
.
6.
Söderberg
,
R.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Carlson
,
J. S.
,
2016
, “
Virtual Geometry Assurance Process and Toolbox
,”
Procedia CIRP
,
43
, pp.
3
12
.
7.
Aderiani
,
A. R.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Lindau
,
B.
,
2020
, “
Optimal Design of Fixture Layouts for Compliant Sheet Metal Assemblies
,”
Int. J. Adv. Manuf. Technol.
,
110
(
7
), pp.
2181
2201
.
8.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
9.
Hong
,
Y.
, and
Chang
,
T.
,
2002
, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2425
2459
.
10.
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Lindau
,
B.
,
Lindkvist
,
L.
, and
Lorin
,
S.
,
2016
, “Joining in Nonrigid Variation Simulation,”
Computer-Aided Technologies-Applications in Engineering and Medicine
,
IntechOpen
,
London, UK
.
11.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2013
, “
Simulation of the Effect of Geometrical Variation on Assembly and Holding Forces
,”
Int. J. Prod. Dev.
,
18
(
1
), p.
88
.
12.
Guo
,
F.
,
Xiao
,
Q.
,
Xiao
,
S.
, and
Wang
,
Z.
,
2023
, “
Analysis on Quantifiable and Controllable Assembly Technology for Aeronautical Thin-Walled Structures
,”
Rob. Comput.-Integr. Manuf.
,
80
, p.
102473
.
13.
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Lindkvist
,
L.
,
Lindau
,
B.
, and
Carlson
,
J. S.
,
2017
, “
Inspection Data to Support a Digital Twin for Geometry Assurance
,”
ASME 2017 International Mechanical Engineering Congress and Exposition. Volume 2: Advanced Manufacturing
,
Tampa, FL
,
Nov. 3–9
,
American Society of Mechanical Engineers Digital Collection
, p. V002T02A101.
14.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Carlson
,
J. S.
, and
Lindkvist
,
L.
,
2017
, “
Toward a Digital Twin for Real-Time Geometry Assurance in Individualized Production
,”
CIRP Ann.
,
66
(
1
), pp.
137
140
.
15.
Tabar
,
R. S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2020
, “
A new Surrogate Model–Based Method for Individualized Spot Welding Sequence Optimization With Respect to Geometrical Quality
,”
Int. J. Adv. Manuf. Technol.
,
106
(
5
), pp.
2333
2346
.
16.
Aderiani
,
A. R.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2021
, “
Combining Selective Assembly and Individualized Locator Adjustments Techniques in a Smart Assembly Line
,”
Procedia CIRP
,
97
, pp.
429
434
.
17.
Morse
,
E.
, and
Grohol
,
C.
,
2019
, “
Practical Conformance Evaluation in the Measurement of Flexible Parts
,”
CIRP Ann.
,
68
(
1
), pp.
507
510
.
18.
Lindau
,
B.
,
Wärmefjord
,
K.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2020
, “
Virtual Fixturing: Inspection of a Non-Rigid Detail Resting on 3-Points to Estimate Free State and Over-Constrained Shapes
,”
Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition (IMECE). Volume 2B: Advanced Manufacturing
,
Virtual, Online
,
Nov. 16–19
, ASME, p. V02BT02A065.
19.
Liu
,
Y. Z.
,
Cui
,
G. M.
,
Zeng
,
J. M.
,
Gan
,
W. K.
, and
Lu
,
J. B.
,
2014
, “
Prediction and Prevention of Distortion for the Thin-Walled Aluminum Investment Casting
,”
Proceedings of the Advanced Materials Research
,
Trans Tech Publ.
, pp.
1049
1053
.
20.
Niu
,
Z.
,
Liu
,
G.
,
Li
,
T.
, and
Ji
,
S.
,
2022
, “
Effect of High Pressure die Casting on the Castability, Defects and Mechanical Properties of Aluminium Alloys in Extra-Large Thin-Wall Castings
,”
J. Mater. Process. Technol.
,
303
, p.
117525
.
21.
Rincon
,
E.
,
Lopez
,
H.
,
Cisneros
,
M.
, and
Mancha
,
H.
,
2009
, “
Temperature Effects on the Tensile Properties of Cast and Heat Treated Aluminum Alloy A319
,”
Mater. Sci. Eng. A
,
519
(
1–2
), pp.
128
140
.
22.
Zamani
,
M.
,
Dini
,
H.
,
Svoboda
,
A.
,
Lindgren
,
L.-E.
,
Seifeddine
,
S.
,
Andersson
,
N.-E.
, and
Jarfors
,
A. E.
,
2017
, “
A Dislocation Density Based Constitutive Model for as-Cast Al-Si Alloys: Effect of Temperature and Microstructure
,”
Int. J. Mech. Sci.
,
121
, pp.
164
170
.
23.
Dini
,
H.
,
Svoboda
,
A.
,
Andersson
,
N.-E.
,
Ghassemali
,
E.
,
Lindgren
,
L.-E.
, and
Jarfors
,
A. E.
,
2018
, “
Optimization and Validation of a Dislocation Density Based Constitutive Model for as-Cast Mg-9% Al-1% Zn
,”
Mater. Sci. Eng. A
,
710
, pp.
17
26
.
24.
Mozammil
,
S.
,
Karloopia
,
J.
, and
Jha
,
P. K.
,
2018
, “
Investigation of Porosity in Al Casting
,”
Mater. Today: Proc.
,
5
(
9
), pp.
17270
17276
.
25.
Barral
,
P.
,
Bermúdez
,
A.
,
Muñiz
,
M.
,
Otero
,
M.
,
Quintela
,
P.
, and
Salgado
,
P.
,
2003
, “
Numerical Simulation of Some Problems Related to Aluminium Casting
,”
J. Mater. Process. Technol.
,
142
(
2
), pp.
383
399
.
26.
Khan
,
M. A. A.
, and
Sheikh
,
A. K.
,
2016
, “
Simulation Tools in Enhancing Metal Casting Productivity and Quality: A Review
,”
Proc. Inst. Mech. Eng. B
,
230
(
10
), pp.
1799
1817
.
27.
Lorin
,
S.
,
Cromvik
,
C.
,
Edelvik
,
F.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2014
, “
Variation Simulation of Welded Assemblies Using a Thermo-Elastic Finite Element Model
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
3
), p.
031003
.
28.
Skovron
,
J.
,
Mears
,
L.
,
Ulutan
,
D.
,
Detwiler
,
D.
,
Paolini
,
D.
,
Baeumler
,
B.
, and
Claus
,
L.
,
2015
, “
Characterization of Flow Drill Screwdriving Process Parameters on Joint Quality
,”
SAE Int. J. Mater. Manuf.
,
8
(
1
), pp.
35
44
.
29.
Aslan
,
F.
,
Langlois
,
L.
,
Mangin
,
P.
, and
Balan
,
T.
,
2018
, “
Identification of Drilling Parameters During the Flow Drill Screw Driving Process
,”
Proceedings of the Key Engineering Materials
,
Trans Tech Publ.
, pp.
465
471
.
30.
Rezaei Aderiani
,
A.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2019
, “
Developing a Selective Assembly Technique for Sheet Metal Assemblies
,”
Int. J. Prod. Res.
,
57
(
22
), pp.
7174
7188
.
31.
ASME
,
2019
,
ASME Y14.5-2018: Dimensioning and Tolerancing
,
American Society of Mechanical Engineers
,
NY
.
32.
ISO
,
2017
,
Geometrical Product Specifications (GPS)
,
International Organization for Standardization
,
Geneva, Switzerland
.
33.
ISO
,
2017
,
STEP ISO 10303-242:2020 Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 242: Application Protocol: Managed Model-Based 3D Engineering
,
International Organization for Standardization
,
Geneva, Switzerland
.
34.
ISO
,
2017
,
ISO 23952:2020 Automation Systems and Integration—Quality Information Framework (QIF)—An Integrated Model for Manufacturing Quality Information
,
International Organization for Standardization
,
Geneva, Switzerland
.
35.
Aderiani
,
A. R.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2022
, “
Model-Based Definition in Computer Aided Tolerance Analyses
,”
Procedia CIRP
,
114
, pp.
112
116
.
36.
Hedberg
,
T.
,
Lubell
,
J.
,
Fischer
,
L.
,
Maggiano
,
L.
, and
Barnard Feeney
,
A.
,
2016
, “
Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
2
), p.
021001
.
37.
European_Commission
,
2019
, “
The European Green Deal
,” https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:640:FIN.
38.
Adisorn
,
T.
,
Tholen
,
L.
, and
Götz
,
T.
,
2021
, “
Towards a Digital Product Passport Fit for Contributing to a Circular Economy
,”
Energies
,
14
(
8
), p.
2289
.
39.
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Schleich
,
B.
, and
Wang
,
H.
,
2020
, “
Digital Twin for Variation Management: A General Framework and Identification of Industrial Challenges Related to the Implementation
,”
Appl. Sci.
,
10
(
10
), p.
3342
.
You do not currently have access to this content.