Abstract

Vortex cores in fluid mechanics are easy to visualize, yet difficult to detect numerically. Precise knowledge of these allows fluid dynamics researchers to study complex flow structures and allow for a better understanding of the turbulence transition process and the development and evolution of flow instabilities, to name but a few relevant areas. Various approaches such as the Q, delta, and swirling strength criterion have been proposed to visualize vortical flows, and these approaches can be used to detect vortex core locations. Using these methods can result in spuriously detected vortex cores and which can be balanced by a cutoff filter, making these methods lack robustness. To overcome this shortcoming, we propose a new approach using convolutional neural networks to detect flow structures directly from streamline plots, using the line integral convolution method. We show that our computer vision-based approach is able to reduce the number of false positives and negatives while removing the need for a cutoff. We validate our approach using the Taylor–Green vortex problem to generate input images for our network. We show that with an increasing number of images used for training, we are able to monotonically reduce the number of false positives and negatives. We then apply our trained network to a different flow problem where vortices are still reliably detected. Thus, our study presents a robust approach that allows for reliable vortex detection which is applicable to a wide range of flow scenarios.

References

1.
Jiang
,
M.
,
Machiraju
,
R.
, and
Thompson
,
D.
,
2005
, “Detection and Visualization of Vortices,”
Visualization Handbook
,
Elsevier
,
Burlington, MA
, pp.
295
309
.
2.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Center for Turbulence Research, Proceedings of the Summer Program, No. 1970
,
Stanford University
,
Dec. 1
, pp.
193
208
.
3.
Liu
,
C. Q.
,
Wang
,
Y. Q.
,
Yang
,
Y.
, and
Duan
,
Z. W.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China: Phys., Mech. Astron.
,
59
(
8
), pp.
1
19
.
4.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
,
1990
, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids A
,
2
(
5
), pp.
765
777
.
5.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid. Mech.
,
387
, pp.
353
396
.
6.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
779
788
.
7.
Ni
,
Z.
,
Chen
,
J.
,
Sang
,
N.
,
Gao
,
C.
, and
Liu
,
L.
,
2018
, “
Light YOLO for High-Speed Gesture Recognition Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China. NERCEL, Central China Norma
,”
2018 25th IEEE International Conference on Image Processing (ICIP)
,
Athens, Greece
,
Oct. 7–10
, pp.
3099
3103
.
8.
Jiang
,
M.
,
Hai
,
T.
,
Pan
,
Z.
,
Wang
,
H.
,
Jia
,
Y.
, and
Deng
,
C.
,
2019
, “
Multi-Agent Deep Reinforcement Learning for Multi-Object Tracker
,”
IEEE Access
,
7
, pp.
32400
32407
.
9.
Boudjit
,
K.
, and
Ramzan
,
N.
,
2021
, “
Human Detection Based on Deep Learning YOLO-v2 for Real-Time UAV Applications
,”
J. Exp. Theor. Artif. Intell.
,
34
(
3
), pp.
1
18
.
10.
Lu
,
J.
,
Ma
,
C.
,
Li
,
L.
,
Xing
,
X.
,
Zhang
,
Y.
,
Wang
,
Z.
, and
Xu
,
J.
,
2018
, “
A Vehicle Detection Method for Aerial Image Based on YOLO
,”
J. Comput. Commun.
,
6
(
11
), pp.
98
107
.
11.
Farhadi
,
A.
, and
Redmon
,
J.
,
2018
, “Yolov3: An Incremental Improvement,
Computer Vision and Pattern Recognition
,
Springer
,
Berlin/Heidelberg, Germany
, pp.
1804
2767
.
12.
Wu
,
X.
, and
Moin
,
P.
,
2009
, “
Direct Numerical Simulation of Turbulence in a Nominally Zero-Pressure-Gradient Flat-Plate Boundary Layer
,”
J. Fluid. Mech.
,
630
, pp.
5
41
.
13.
Kenwright
,
D.
, and
Haimes
,
R.
,
1997
, “
Vortex Identification—Applications in Aerodynamics: A Case Study
,”
Proceedings of the IEEE Visualization Conference
,
Phoenix, AZ
,
Oct. 19–24
, pp.
413
415
.
14.
Kohler
,
B.
,
Gasteiger
,
R.
,
Preim
,
U.
,
Theisel
,
H.
,
Gutberlet
,
M.
, and
Preim
,
B.
,
2013
, “
Semi-Automatic Vortex Extraction in 4D PC-MRI Cardiac Blood Flow Data Using Line Predicates
,”
IEEE Trans. Vis. Comput. Graph.
,
19
(
12
), pp.
2773
2782
.
15.
Oeltze-Jafra
,
S.
,
Cebral
,
J. R.
,
Janiga
,
G.
, and
Preim
,
B.
,
2016
, “
Cluster Analysis of Vortical Flow in Simulations of Cerebral Aneurysm Hemodynamics
,”
IEEE Trans. Vis. Comput. Graph.
,
22
(
1
), pp.
757
766
.
16.
Gutak
,
A. D.
,
2015
, “
Experimental Investigation and Industrial Application of Ranque-Hilsch Vortex Tube
,”
Int. J. Refrig.
,
49
, pp.
93
98
.
17.
Epps
,
B. P.
,
2017
, “
Review of Vortex Identification Methods
,”
AIAA SciTech Forum – 55th AIAA Aerospace Sciences Meeting
,
Grapevine, TX
,
Jan. 9–13
.
18.
Förste
,
J.
,
1984
, “
Lugt, H. J., Vortex Flow in Nature and Technology. New York et al., John Wiley & Sons 1983. XV, 297 S., Zahlr. Abb., £ 47.45. ISBN 0-471-86925-2
,”
ZAMM - J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik
,
64
(
11
), p.
502
.
19.
Robinson
,
S. K.
,
1991
, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid. Mech.
,
23
(
1
), pp.
601
639
.
20.
Sadarjoen
,
I. A.
,
Post
,
F. H.
,
Ma
,
B.
,
Banks
,
D. C.
, and
Pagendarm
,
H. G.
,
1998
, “
Selective Visualization of Vortices in Hydrodynamic Flows
,”
Proceedings of the IEEE Visualization Conference
,
Research Triangle Park, NC
,
Oct. 18–23
, Vol. 98, pp.
419
422
.
21.
Haller
,
G.
,
Hadjighasem
,
A.
,
Farazmand
,
M.
, and
Huhn
,
F.
,
2016
, “
Defining Coherent Vortices Objectively From the Vorticity
,”
J. Fluid. Mech.
,
795
, pp.
136
173
.
22.
Serra
,
M.
, and
Haller
,
G.
,
2016
, “
Objective Eulerian Coherent Structures
,”
Chaos
,
26
(
5
), p.
053110
.
23.
Zhang
,
Y.
,
Liu
,
K.
,
Xian
,
H.
, and
Du
,
X.
,
2018
, “
A Review of Methods for Vortex Identification in Hydroturbines
,”
Renewable. Sustainable. Energy. Rev.
,
81
, pp.
1269
1285
.
24.
Li
,
M.
, and
McComb
,
C.
,
2022
, “
Using Physics-Informed Generative Adversarial Networks to Perform Super-Resolution for Multiphase Fluid Simulations
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
044501
.
25.
Ayli
,
U. E.
,
Kocak
,
E.
, and
Turkoglu
,
H.
,
2022
, “
Machine Learning Based Developing Flow Control Technique Over Circular Cylinders
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
2
), p.
021015
.
26.
Warey
,
A.
,
Raul
,
V.
,
Kaushik
,
S.
,
Han
,
T.
, and
Chakravarty
,
R.
,
2023
, “
Generative Inverse Design of Aerodynamic Shapes Using Conditional Invertible Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031006
.
27.
Nabian
,
M. A.
, and
Meidani
,
H.
,
2019
, “
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011006
.
28.
Samtaney
,
R.
,
Silver
,
D.
,
Zabusky
,
N.
, and
Cao
,
J.
,
1994
, “
Visualizing Features and Tracking Their Evolution
,”
Computer
,
27
(
7
), pp.
20
27
.
29.
Carlborn
,
I.
,
Chakravarty
,
I.
, and
Hsu
,
W. M.
,
1992
, “
SIGGRAPH'91 Workshop Report Integrating Computer Graphics, Computer Vision, and Image Processing in Scientific Applications
,”
ACM SIGGRAPH Comput. Graph.
,
26
(
1
), pp.
8
17
.
30.
Silver
,
D.
, and
Wang
,
X.
,
1997
, “
Tracking and Visualizing Turbulent 3D Features
,”
IEEE Trans. Vis. Comput. Graph.
,
3
(
2
), pp.
129
141
.
31.
Abdurakipov
,
S.
,
Tokarev
,
M.
,
Butakov
,
E.
, and
Dulin
,
V.
,
2019
, “
Application of Computer Vision and Neural Network Analysis to Study the Structure and Dynamics of Turbulent Jets
,”
J. Phys. Conf. Series
,
1421
, p.
012018
.
32.
Wang
,
Y.
,
Deng
,
L.
,
Yang
,
Z.
,
Zhao
,
D.
, and
Wang
,
F.
,
2021
, “
A Rapid Vortex Identification Method Using Fully Convolutional Segmentation Network
,”
Visual Comput.
,
37
(
2
), pp.
261
273
.
33.
Kim
,
B.
, and
Günther
,
T.
,
2019
, “
Robust Reference Frame Extraction From Unsteady 2D Vector Fields With Convolutional Neural Networks
,”
Comput. Graph. Forum
,
38
(
3
), pp.
285
295
.
34.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
ImageNet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
35.
Lawrence
,
S.
,
Giles
,
C. L.
,
Tsoi
,
A. C.
, and
Back
,
A. D.
,
1997
, “
Face Recognition: A Convolutional Neural-Network Approach
,”
IEEE Trans. Neural Netw.
,
8
(
1
), pp.
98
113
.
36.
Lguensat
,
R.
,
Sun
,
M.
,
Fablet
,
R.
,
Mason
,
E.
,
Tandeo
,
P.
, and
Chen
,
G.
,
2018
, “
EddyNet: A Deep Neural Network for Pixel-Wise Classification of Oceanic Eddies
,”
International Geoscience and Remote Sensing Symposium (IGARSS)
,
Valencia, Spain
,
July 22–27
, pp.
1764
1767
.
37.
Franz
,
K.
,
Roscher
,
R.
,
Milioto
,
A.
,
Wenzel
,
S.
, and
Kusche
,
J.
,
2018
, “
Ocean Eddy Identification and Tracking Using Neural Networks
,”
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium
,
Valencia, Spain
,
July 22–27
.
38.
Ströfer
,
C. M.
,
Wu
,
J.
,
Xiao
,
H.
, and
Paterson
,
E.
,
2019
, “
Data-Driven, Physics-Based Feature Extraction From Fluid Flow Fields
,”
Commun. Comput. Phys.
,
25
(
3
), pp.
625
650
.
39.
Deng
,
L.
,
Wang
,
Y.
,
Liu
,
Y.
,
Wang
,
F.
,
Li
,
S.
, and
Liu
,
J.
,
2019
, “
A CNN-Based Vortex Identification Method
,”
J. Vis.
,
22
(
1
), pp.
65
78
.
40.
Patankar
,
S.
,
1982
,
Numerical Heat Transfer and Fluid Flow (Computational Methods in Mechanics & Thermal Sciences)
, 1st ed.,
CRC Press
,
Boca Raton, FL
, pp.
126
162
.
41.
DeBonis
,
J. R.
,
2010
, “
A High-Resolution Capability for Large-Eddy Simulation of Jet Flows
,”
40th AIAA Fluid Dynamics Conference
,
Chicago, IL
,
June 28–July 1
, pp.
1
22
.
42.
Lesieur
,
M.
, and
Métais
,
O.
,
1996
, “
New Trends in Large-Eddy Simulations of Turbulence
,”
Annu. Rev. Fluid. Mech.
,
28
(
1
), pp.
45
82
.
43.
Lindner
,
G.
,
Devaux
,
Y.
, and
Miskovic
,
S.
,
2020
, “
VortexFitting: A Post-Processing Fluid Mechanics Tool for Vortex Identification
,”
SoftwareX
,
12
, p.
100604
.
44.
Cabral
,
B.
, and
Leedom
,
L.
,
1993
, “
Imaging Vector Fields Using Line Integral Convolution
,”
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1993
,
Anaheim, CA
,
Aug. 1–6
, pp.
263
270
.
45.
Wang
,
Q.
,
Bi
,
S.
,
Sun
,
M.
,
Wang
,
Y.
,
Wang
,
D.
, and
Yang
,
S.
,
2018
, “
Deep Learning Approach to Peripheral Leukocyte Recognition
,”
PLoS. One
,
14
(
6
), pp.
1
18
.
46.
Nepal
,
U.
, and
Eslamiat
,
H.
,
2022
, “
Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs
,”
Sensors
,
22
(
2
), p.
464
.
47.
Diosady
,
L.
, and
Murman
,
S.
,
2015
, “
Case 3.3: Taylor Green Vortex Evolution
,”
Case Summary for 3rd International Workshop on Higher-Order CFD Methods
,
Orlando, FL
,
Jan. 3–4
.
48.
Beck
,
A. D.
, and
Gassner
,
G. J.
,
2012
, “
Numerical Simulation of the Taylor-Green Vortex at Re = 1600 With the Discontinuous Galerkin Spectral Element Method for Well-Resolved and Underresolved Scenarios
,”
50th AIAA Aerospace Sciences Meeting
,
Nashville, TN
,
Jan. 9–12
, pp.
1
4
.
49.
DeBonis
,
J. R.
,
2013
, “
Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods
,”
51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
,
Grapevine, TX
,
Jan. 7–10
, pp.
1
20
.
50.
Li
,
J.
,
Gu
,
J.
,
Huang
,
Z.
, and
Wen
,
J.
,
2019
, “
Application Research of Improved YOLO V3 Algorithm in PCB Electronic Component Detection
,”
Appl. Sci. (Switzerland)
,
9
(
18
), p.
3750
.
51.
Szoke
,
M.
,
Nurani Hari
,
N.
,
Devenport
,
W. J.
,
Glegg
,
S. A.
, and
Teschner
,
T.-R.
,
2021
, “
Flow Field Analysis Around Pressure Shielding Structures
,”
AIAA Aviation 2021 Forum 2021
,
Virtual Event
,
Aug. 2–6
, pp.
1
25
.
You do not currently have access to this content.