Abstract

Roundness is one of the common attributes in the manufacturing industry. Roundness is the most prominent of the extant fundamental forms, as the majority of the fabricated components are round or cylindrical. The examination of roundness error associated with such features is critical since inadequate evaluation might result in the rejection of excellent parts. The performance of any equipment depends on the mating parts. Out-of-roundness components cause the inefficiency of such equipment’s system performance. As a result, roundness error assessment is critical for macro-sized specimens as well as for micro- and nano-sized components. The present article proposes a novel approach to Minimum Zone Circle (MZC) to evaluate the roundness error. An iterative field search methodology is used in the suggested approach. The proposed methodology evaluates the roundness error based on the generated discretized points within the search space and continues the same by decreasing the search space with an increase in the number of iterations to attain the Minimum Zone Error (MZE). The proposed algorithm has been tested with ten CMM (coordinate measuring machine) datasets and ten form datasets available in the literature studies and found to be excellent in comparison to the existing techniques. Further, the proposed methodology was also implemented to estimate the MZE of centerless ground specimens at multiple cross sections, and the roundness error obtained was lesser as compared to the LSC, MCC, and MIC. The number of generated discretized points is flexible and can be varied to reduce the number of iterations and computations. The recommended method is quite effective in assessing the roundness error when compared to the existing techniques. It also works well on data that was both evenly and unevenly spaced. The results suggest that altering the search field area for higher computing efficiency is straightforward, resilient, and versatile.

References

1.
Rhinithaa
,
P. T.
,
Selvakumar
,
P.
,
Sudhakaran
,
N.
,
Anirudh
,
V.
,
Lawrence
,
K. D.
, and
Mathew
,
J.
,
2018
, “
Comparative Study of Roundness Evaluation Algorithms for Coordinate Measurement and Form Data
,”
Precis. Eng.
,
51
, pp.
458
467
.
2.
Murthy
,
T. S. R.
,
1986
, “
A Comparison of Different Algorithms for Circularity Evaluation
,”
Precis. Eng.
,
8
(
1
), pp.
19
23
.
3.
Raghu
,
S.
,
Mamatha
,
T. G.
,
Pali
,
H. S.
,
Sharma
,
R.
,
Vimal
,
J. R.
, and
Kumar
,
V.
,
2020
, “
A Comparative Study of Circularity of Artefact Detecting Circle Using CMM and Form Tester With Different Filters
,”
Mater. Today: Proc.
,
25
(
4
), pp.
821
826
.
4.
Gadelmawla
,
E. S.
,
2010
, “
Simple and Efficient Algorithms for Roundness Evaluation From the Coordinate Measurement Data
,”
Measurement
,
43
(
2
), pp.
223
235
.
5.
Sui
,
W.
, and
Zhang
,
D.
,
2012
, “
Four Methods for Roundness Evaluation
,”
Phys. Procedia
,
24
(
C
), pp.
2159
2164
.
6.
Ali
,
S. H. R.
,
2013
, “
The Influence of Strategic Parameters on Roundness Accuracy Development
,”
Proceedings of the 11th International Symposium on Measurement and Quality Control 2013 (IMEKO, TC14—11th ISMQC)
,
Cracow-Kielce, Poland
,
Sept. 11–13
, pp.
1
10
.
7.
Weber
,
T.
,
Motavalli
,
S.
,
Fallahi
,
B.
, and
Cheraghi
,
S. H.
,
2002
, “
A Unified Approach to Form Error Evaluation
,”
Precis. Eng.
,
26
(
3
), pp.
269
278
.
8.
Singh
,
D.
,
Arunachalam
,
N.
, and
Srinivasu
,
D. S.
,
2021
, “
A Novel Iterative-Based Field Search Technique for Roundness Evaluation
,”
Procedia Manuf.
,
53
, pp.
268
275
.
9.
ANSI/ASME Y14.5M
,
1982
, “
Dimensioning and Tolerancing New York: American National Standards Institute
,”
The American Society of Mechanical Engineers
, https://webstore.ansi.org/standards/asme/asmey145m1982
10.
International Organization for Standardization, Geneva
, “
ISO 1101 1983 Technical drawings: Tolerancing of Form, Orientation, Location, and Runout—Generalities, Definitions, Symbols, Indications on Drawing
,” https://www.iso.org/standard/5614.html.
11.
Prieto
,
E.
,
Muñoz
,
R.
,
Arce
,
A. A.
,
Bergmans
,
R.
,
Kotte
,
G.
,
Holmberg
,
M.
,
Svendsmark
,
M.
, et al
,
2017
, “
Supplementary Comparison EURAMET.L-S23 (#1269) High Precision Roundness Measurement by Error Separation Techniques
,”
Metrologia
,
54
(
1A
), p.
04003
.
12.
Prieto
,
E.
,
Muñoz
,
R.
,
Koops
,
R.
,
Toftegaard
,
J. B.
,
Astrua
,
M.
,
Nouira
,
H.
, and
Salgado
,
J.
,
2022
, “
High Precision Roundness Measurement by Error Separation Techniques (EURAMET.L-S30)
,”
Metrologia
,
59
(
1A
), p.
04003
.
13.
Vissiere
,
A.
,
Nouira
,
H.
,
Damak
,
M.
,
Gibaru
,
O.
, and
David
,
J. M.
,
2012
, “
Concept and Architecture of a New Apparatus for Cylindrical Form Measurement With a Nanometric Level of Accuracy
,”
Meas. Sci. Technol.
,
23
(
9
), p.
094014
.
14.
Vissiere
,
A.
,
Nouira
,
H.
,
Damak
,
M.
,
Gibaru
,
O.
, and
David
,
J. M.
,
2012
, “
A Newly Conceived Cylinder Measuring Machine and Methods That Eliminate the Spindle Errors
,”
Meas. Sci. Technol.
,
23
(
9
), p.
094015
.
15.
Murthy
,
T. S. R.
,
Reddy
,
G. C.
, and
Radhakrishnan
,
V.
,
1982
, “
Evaluation of the Form Errors of Axisymmetric Components
,”
Wear
,
83
(
1
), pp.
143
150
.
16.
Fanwu
,
M.
,
Chunguang
,
X.
,
Haiming
,
L.
,
Juan
,
H.
, and
Dingguo
,
X.
,
2011
, “
Quick Algorithm of Maximum Inscribed Circle Method for Roundness Evaluation
,”
Proceedings of the 2011 International Conference on System Science, Engineering Design and Manufacturing Informatization
,
Guiyang, China
,
Oct. 22–23
, Vol.
2
, pp.
348
351
.
17.
Kim
,
N. H.
, and
Kim
,
S. W.
,
1996
, “
Geometrical Tolerances: Improved Linear Approximation of Least Squares Evaluation of Circularity by Minimum Variance
,”
Int. J. Mach. Tools Manuf.
,
36
(
3
), pp.
355
366
.
18.
Zhu
,
X.
,
Ding
,
H.
, and
Wang
,
M. Y.
,
2004
, “
Form Error Evaluation: An Iterative Reweighted Least Squares Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
535
541
.
19.
Li
,
X.
, and
Shi
,
Z.
,
2009
, “
The Relationship Between the Minimum Zone Circle and the Maximum Inscribed Circle and the Minimum Circumscribed Circle
,”
Precis. Eng.
,
33
(
3
), pp.
284
290
.
20.
Srinivasu
,
D. S.
, and
Venkaiah
,
N.
,
2017
, “
Minimum Zone Evaluation of Roundness Using Hybrid Global Search Approach
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
2743
2754
.
21.
Huang
,
J.
,
1999
, “
An Exact Solution for the Roundness Evaluation Problems
,”
Precis. Eng.
,
23
(
1
), pp.
2
8
.
22.
Arezki
,
Y.
,
Zhang
,
X.
,
Mehdi-Souzani
,
C.
,
Anwer
,
N.
, and
Nouira
,
H.
,
2018
, “
Investigation of Minimum Zone Assessment Methods for Aspheric Shapes
,”
Precis. Eng.
,
52
, pp.
300
307
.
23.
Huang
,
J.
,
1999
, “
An Exact Minimum Zone Solution for Three-Dimensional Straightness Evaluation Problems
,”
Precis. Eng.
,
23
(
3
), pp.
204
208
.
24.
Zheng
,
Y.
,
2020
, “
A Simple Unified Branch-and-Bound Algorithm for Minimum Zone Circularity and Sphericity Errors
,”
Meas. Sci. Technol.
,
31
(
4
), p.
045005
.
25.
Bourdet
,
P.
, and
Clément
,
A.
,
1976
, “
Controlling a Complex Surface With a 3-Axis Measuring Machine
,”
CIRP Ann.
,
25
, pp.
359
361
.
26.
Venkaiah
,
N.
, and
Shunmugam
,
M. S.
,
2007
, “
Evaluation of Form Data Using Computational Geometric Techniques-Part I: Circularity Error
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1229
1236
.
27.
Huang
,
J.
,
2001
, “
A New Strategy for Circularity Problems
,”
Precis. Eng.
,
25
(
4
), pp.
301
308
.
28.
Shunmugam
,
M. S.
, and
Venkaiah
,
N.
,
2010
, “
Establishing Circle and Circular-Cylinder References Using Computational Geometric Techniques
,”
Int. J. Adv. Manuf. Technol.
,
51
(
1–4
), pp.
261
275
.
29.
Samuel
,
G. L.
, and
Shunmugam
,
M. S.
,
2000
, “
Evaluation of Circularity From Coordinate and Form Data Using Computational Geometric Techniques
,”
Precis. Eng.
,
24
(
3
), pp.
251
263
.
30.
Roy
,
U.
, and
Zhang
,
X.
,
1994
, “
Development and Application of Voronoi Diagrams in the Assessment of Roundness Error in an Industrial Environment
,”
Computers & Industrial Engineering
,
26
(
1
), pp.
11
26
.
31.
Rajagopal
,
K.
, and
Anand
,
S.
,
1999
, “
Assessment of Circularity Error Using a Selective Data Partition Approach
,”
Int. J. Prod. Res.
,
37
(
17
), pp.
251
256
.
32.
Sharma
,
R.
,
Rajagopal
,
K.
, and
Anand
,
S.
,
2000
, “
A Genetic Algorithm Based Approach for Robust Evaluation of Form Tolerances
,”
J. Manuf. Syst.
,
19
(
1
), pp.
46
57
.
33.
Wen
,
X.
,
Xia
,
Q.
, and
Zhao
,
Y.
,
2006
, “
An Effective Genetic Algorithm for Circularity Error Unified Evaluation
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1770
1777
.
34.
Wu
,
Z. Y.
,
Gou
,
J.
, and
Cui
,
C. C.
,
2011
, “
An Improved Particle Swarm Optimization Algorithm Applied to the Unified Evaluation of Circularity Error
,”
Appl. Mech. Mater.
,
44–47
, pp.
3937
3941
.
35.
Rossi
,
A.
, and
Lanzetta
,
M.
,
2016
, “
Minimal Exhaustive Search Heuristics (MESH) of Point Clouds for Form Tolerances: The Minimum Zone Roundness
,”
Precis. Eng.
,
43
, pp.
154
163
.
36.
Nouira
,
H.
, and
Bourdet
,
P.
,
2014
, “
Evaluation of Roundness Error Using a New Method Based on a Small Displacement Screw
,”
Meas. Sci. Technol.
,
25
(
4
), p.
044012
.
37.
Endrias
,
D. H.
, and
Feng
,
H. Y.
,
2003
, “
Minimum-Zone Form Tolerance Evaluation Using Rigid-Body Coordinate Transformation
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
1
), pp.
31
38
.
38.
Sudhakara
,
N.
,
Selvakumar
,
P.
,
Mathew
,
J.
,
Deepak Lawrence
,
K.
,
Vysyaraju
,
A.
, and
Rhinithaa
,
P. T.
,
2017
, “
Data for: Comparative Study of Roundness Evaluation Algorithms for Coordinate Measurement and Form Data Mendeley Data
,” V1.
You do not currently have access to this content.