Abstract

With the rapid development of microelectronics science and technology, the quality of IC-grade silicon single crystal directly affects the yield and stability of the performance of semiconductor device production. As the main equipment for the preparation of such materials, the monitoring and maintenance of the working condition of the single crystal furnace are crucial. Bi-directional long short-term memory (Bi-LSTM) is an innovative neural network paradigm that is used to predict future occurrences by learning the bi-directional long-term dependencies of time-steps and serial data. This paper built a Bi-LSTM based model that can dynamically predict the pulling speed of a Czochralski (Cz) single-crystal furnace by modeling the time series of operational parameters. The Bi-LSTM model is validated using real data from a silicon single-crystal factory. It is proven that the model achieved higher accuracy than LSTM, ANN, SVR, and XGBOOST. The experimental results verify the validity of modeling the pulling speed of single-crystal furnace devices through the Bi-LSTM model by using the time series of multi-dimensional parameters. Therefore, the Bi-LSTM model can serve as a reference for modeling the parameters of such devices.

References

1.
SIA
,
2021
, “
2021 State of the U.S. Semiconductor Industry
,” https://www.semiconductors.org/state-of-the-u-s-semiconductor-industry
2.
WSTS
,
2021
, “
World Semiconductor Trade Statistics (WSTS) Semiconductor Market Forecast
,” https://www.wsts.org/76/103/WSTS-Semiconductor-Market-Forecast-Spring-2021, Accessed June 8.
3.
Tomaszewski
,
P. E.
,
2002
, “
Jan Czochralski—Father of the Czochralski Method
,”
J. Cryst. Growth
,
236
(
1–3
), pp.
1
4
.
4.
Hurle
,
D. T.
,
2012
,
Crystal Pulling From the Melt
,
Springer Science & Business Media
,
Berlin/Heidelberg
, pp.
78
93
.
5.
Valentino
,
A. J.
, and
Brandle
,
C. D.
,
1974
, “
Diameter Control of Czochralski Grown Crystals
,”
J. Cryst. Growth
,
26
(
1
), pp.
1
5
.
6.
Wolf
,
W.
,
2009
, “
Cyber-Physical Systems
,”
Computer
,
42
(
3
), pp.
88
89
.
7.
Liu
,
S.
,
Guo
,
C.
, and
Mei
,
N.
,
2019
, “
Main Parameters Prediction of the Hot Water Boiler Based on the LSTM Neural Networks
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
677
(
3
), p.
032100
.
8.
Shen
,
S. L.
,
Atangana Njock
,
P. G.
,
Zhou
,
A.
, and
Lyu
,
H. M.
,
2021
, “
Dynamic Prediction of Jet Grouted Column Diameter in Soft Soil Using Bi-LSTM Deep Learning
,”
Acta Geotechn.
,
16
(
1
), pp.
303
315
.
9.
Zhang
,
J.
,
Wang
,
X.
,
Zhao
,
C.
,
Bai
,
W.
,
Shen
,
J.
,
Li
,
Y.
,
Pan
,
Z.
, and
Duan
,
Y.
,
2020
, “
Application of Cost-Sensitive LSTM in Water Level Prediction for Nuclear Reactor Pressurizer
,”
Nucl. Eng. Technol.
,
52
(
7
), pp.
1429
1435
.
10.
Hong
,
J.
,
Wang
,
Z.
,
Chen
,
W.
, and
Yao
,
Y.
,
2019
, “
Synchronous Multi-Parameter Prediction of Battery Systems on Electric Vehicles Using Long Short-Term Memory Networks
,”
Appl. Energy
,
254
, p.
113648
.
11.
Yoon
,
N.
,
Kim
,
J.
,
Lim
,
J. L.
,
Abbas
,
A.
,
Jeong
,
K.
, and
Cho
,
K. H.
,
2021
, “
Dual-Stage Attention-Based LSTM for Simulating Performance of Brackish Water Treatment Plant
,”
Desalination
,
512
, p.
115107
.
12.
Park
,
K.
,
Choi
,
Y.
,
Choi
,
W. J.
,
Ryu
,
H. Y.
, and
Kim
,
H.
,
2020
, “
LSTM-Based Battery Remaining Useful Life Prediction With Multi-Channel Charging Profiles
,”
IEEE Access
,
8
, pp.
20786
20798
.
13.
Liu
,
J.
,
Lei
,
F.
,
Pan
,
C.
,
Hu
,
D.
, and
Zuo
,
H.
,
2021
, “
Prediction of Remaining Useful Life of Multi-Stage Aero-Engine Based on Clustering and LSTM Fusion
,”
Reliab. Eng. Syst. Saf.
,
214
, p.
107807
.
14.
He
,
M.
,
Zhang
,
Z.
, and
Li
,
N.
, “
Deep Convolutional Neural Network-Based Method for Strength Parameter Prediction of Jointed Rock Mass Using Drilling Logging Data
,”
Int. J. Geomech.
,
21
(
7
), p.
04021111
.
15.
Van Komen
,
D. F.
,
Neilsen
,
T. B.
,
Mortenson
,
D. B.
,
Acree
,
M. C.
,
Knobles
,
D. P.
,
Badiey
,
M.
, and
Hodgkiss
,
W. S.
,
2021
, “
Seabed Type and Source Parameters Predictions Using Ship Spectrograms in Convolutional Neural Networks
,”
J. Acoust. Soc. Am.
,
149
(
2
), pp.
1198
1210
.
16.
Yang
,
Z.
,
Liu
,
S.
,
Li
,
Z.
,
Jiang
,
Z.
, and
Dong
,
C.
,
2021
, “
Application of Machine Learning Techniques in Operating Parameters Prediction of Stirling Cryocooler
,”
Cryogenics
,
113
, p.
103213
.
17.
Li
,
H.
,
Li
,
X.
,
Liu
,
X.
,
Bu
,
X.
,
Li
,
H.
, and
Lyu
,
Q.
,
2022
, “
Prediction of Blast Furnace Parameters Using Feature Engineering and Stacking Algorithm
,”
Ironmak. Steelmak.
,
49
(
3
), pp.
283
296
.
18.
Meng
,
X.
,
Zhang
,
Y.
, and
Qiao
,
J.
,
2021
, “
An Adaptive Task-Oriented RBF Network for Key Water Quality Parameters Prediction in Wastewater Treatment Process
,”
Neural Comput. Appl.
,
33
(
17
), pp.
11401
11414
.
19.
Lin
,
M.
,
Shan
,
M.
,
Zhou
,
J.
, and
Pan
,
Y.
,
2022
, “
A Data-Driven Fault Diagnosis Method Using Modified Health Index and Deep Neural Networks of a Rolling Bearing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021005
.
20.
Gorguluarslan
,
R. M.
,
Ates
,
G. C.
,
Utku Gungor
,
O.
, and
Yamaner
,
Y.
,
2022
, “
Strut Diameter Uncertainty Prediction by Deep Neural Network for Additively Manufactured Lattice Structures
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031001
.
21.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
22.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2019
,
Deep Learning
,
MIT Press
,
Cambridge, MA
, pp.
164
167
.
23.
Elman
,
J. L.
,
1990
, “
Finding Structure in Time
,”
Cogn. Sci.
,
14
(
2
), pp.
179
211
.
24.
Gers
,
F. A.
,
Schraudolph
,
N. N.
, and
Schmidhuber
,
J.
,
2002
, “
Learning Precise Timing With LSTM Recurrent Networks
,”
J. Mach. Learn. Res.
,
3
, pp.
115
143
.
25.
Siami-Namini
,
S.
,
Tavakoli
,
N.
, and
Namin
,
A. S.
,
2019
, “
The Performance of LSTM and Bi-LSTM in Forecasting Time Series
,”
2019 IEEE International Conference on Big Data (Big Data)
,
Los Angeles, CA
,
Dec. 9–12
, pp.
3285
3292
.
26.
Graves
,
A.
,
Jaitly
,
N.
, and
Mohamed
,
A. R.
,
2013
, “
Hybrid Speech Recognition With Deep Bidirectional LSTM
,”
2013 IEEE Workshop on Automatic Speech Recognition and Understanding
,
Olomouc, Czech Republic
,
Dec. 8–12
, pp.
273
278
.
27.
Boden
,
M.
,
2002
, “
A Guide to Recurrent Neural Networks and Backpropagation
,” The Dallas Project, 2(2), pp.
1
10
.
28.
Brownlee
,
J.
,
2017
, “
How to Convert a Time Series to a Supervised Learning Problem in Python
,” Machine Learning Mastery, pp.
1
20
.
29.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13
, pp.
785
794
.
30.
Drucker
,
H.
,
Burges
,
C. J.
,
Kaufman
,
L.
,
Smola
,
A.
, and
Vapnik
,
V.
,
1996
, “
Support Vector Regression Machines
,”
Advances in Neural Information Processing Systems 9. Proceedings of the 1996 Conference
,
Denver, CO
,
Dec. 2–5
, pp.
155
161
.
You do not currently have access to this content.